Suppr超能文献

控制氮同化的大肠杆菌PII信号转导蛋白在体外作为腺苷酸能量电荷的传感器。

Escherichia coli PII signal transduction protein controlling nitrogen assimilation acts as a sensor of adenylate energy charge in vitro.

作者信息

Jiang Peng, Ninfa Alexander J

机构信息

Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA.

出版信息

Biochemistry. 2007 Nov 13;46(45):12979-96. doi: 10.1021/bi701062t. Epub 2007 Oct 16.

Abstract

PII signal transduction proteins are among the most widely distributed signaling proteins in nature, controlling nitrogen assimilation in organisms ranging from bacteria to higher plants. PII proteins integrate signals of cellular metabolic status and interact with and regulate receptors that are signal transduction enzymes or key metabolic enzymes. Prior work with Escherichia coli PII showed that all signal transduction functions of PII required ATP binding to PII and that ATP binding was synergistic with the binding of alpha-ketoglutarate to PII. Furthermore, alpha-ketoglutarate, a cellular signal of nitrogen and carbon status, was observed to strongly regulate PII functions. Here, we show that in reconstituted signal transduction systems, ADP had a dramatic effect on PII regulation of two E. coli PII receptors, ATase, and NRII (NtrB), and on PII uridylylation by the signal transducing UTase/UR. ADP acted antagonistically to alpha-ketoglutarate, that is, low adenylylate energy charge acted to diminish signaling of nitrogen limitation. By individually studying the interactions that occur in the reconstituted signal transduction systems, we observed that essentially all PII and PII-UMP interactions were influenced by ADP. Our experiments also suggest that under certain conditions, the three nucleotide binding sites of the PII trimer may be occupied by combinations of ATP and ADP. In the aggregate, our results show that PII proteins, in addition to serving as sensors of alpha-ketoglutarate, have the capacity to serve as direct sensors of the adenylylate energy charge.

摘要

PII信号转导蛋白是自然界中分布最广泛的信号蛋白之一,控制着从细菌到高等植物等生物体中的氮同化。PII蛋白整合细胞代谢状态信号,并与作为信号转导酶或关键代谢酶的受体相互作用并对其进行调节。先前对大肠杆菌PII的研究表明,PII的所有信号转导功能都需要ATP与PII结合,并且ATP结合与α-酮戊二酸与PII的结合具有协同作用。此外,α-酮戊二酸作为氮和碳状态的细胞信号,被观察到能强烈调节PII的功能。在此,我们表明,在重组信号转导系统中,ADP对两种大肠杆菌PII受体(天冬氨酸激酶、高丝氨酸脱氢酶和NRII(NtrB))的PII调节以及信号转导UTase/UR对PII的尿苷酰化具有显著影响。ADP与α-酮戊二酸起拮抗作用,也就是说,低腺苷酸能荷会减弱氮限制信号。通过单独研究重组信号转导系统中发生的相互作用,我们观察到基本上所有PII和PII-UMP相互作用都受ADP影响。我们的实验还表明,在某些条件下,PII三聚体的三个核苷酸结合位点可能被ATP和ADP的组合占据。总体而言,我们的结果表明,PII蛋白除了作为α-酮戊二酸的传感器外,还具有作为腺苷酸能荷直接传感器的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验