Romero Natalia, Peluffo Gonzalo, Bartesaghi Silvina, Zhang Hao, Joseph Joy, Kalyanaraman Balaraman, Radi Rafael
Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
Chem Res Toxicol. 2007 Nov;20(11):1638-48. doi: 10.1021/tx700142a. Epub 2007 Oct 18.
We have previously demonstrated that red blood cells (RBC) are an important sink of intravascularly generated peroxynitrite even in the presence of physiological concentrations of CO2 or other plasmatic biotargets. Once inside erythrocytes, peroxynitrite reacts fast with oxyhemoglobin (oxyHb; k2=2 x 10(4) M(-1) s(-1) at 37 degrees C and pH 7.4) and isomerizes to nitrate. Herein, we investigated whether, in spite of the fast diffusion and consumption of extracellularly added peroxynitrite by intraerythrocytic oxyHb, peroxynitrite-dependent radical processes could occur at the RBC membrane, focusing on tyrosine nitration. For this purpose, the hydrophobic tyrosine analogue N-t-BOC-L-tyrosine tert-butyl ester (BTBE) was successfully incorporated for the first time to a biological membrane, that is, RBC membrane, with incorporation yields approximately 1-3 x 10(7) molecules per RBC. The membrane integrity of BTBE-containing RBC was not significantly altered after BTBE incorporation as demonstrated by permeability studies. The probe was then used to study peroxynitrite-dependent reactions. The addition of peroxynitrite to BTBE-containing RBC suspensions resulted in BTBE nitration and dimerization to 3-nitro-BTBE and 3,3'-di-BTBE, respectively, indicative of peroxynitrite-derived radicals reactions in the membrane. Peroxynitrite addition to RBC also caused tyrosine nitration of membrane-associated proteins. The free radical nature of the process was also shown by the detection of protein-derived radicals by DMPO-immunospin trapping. While the presence of extracellular CO2 was potently inhibitory of intracellular oxyHb oxidation, membrane protein and BTBE nitration by peroxynitrite at <or=500 microM were, on the other hand, generally enhanced, supporting the participation of peroxynitrite-derived radicals (i.e., nitrogen dioxide and carbonate radicals) in the nitration process. Studies with erythrocyte ghosts having different contents of re-encapsulated oxyHb confirmed the role of intracellular oxyHb as a sink of nitrating species, as BTBE nitration and dimerization decreased with the increase in hemoglobin concentration. In summary, with the aid of a hydrophobic tyrosine analogue, our results show that peroxynitrite can mediate free radical-dependent nitration and dimerization processes in the RBC membrane, in spite of the significant peroxynitrite scavenging activity of oxyHb inside the RBC.
我们之前已经证明,即使在存在生理浓度的二氧化碳或其他血浆生物靶点的情况下,红细胞(RBC)也是血管内生成的过氧亚硝酸盐的重要汇聚点。一旦进入红细胞,过氧亚硝酸盐会与氧合血红蛋白(oxyHb;在37℃和pH 7.4时,k2 = 2×10⁴ M⁻¹ s⁻¹)快速反应并异构化为硝酸盐。在此,我们研究了尽管细胞内的氧合血红蛋白会快速扩散并消耗细胞外添加的过氧亚硝酸盐,但过氧亚硝酸盐依赖性自由基过程是否会在红细胞膜上发生,重点是酪氨酸硝化。为此,疏水性酪氨酸类似物N - t - BOC - L - 酪氨酸叔丁酯(BTBE)首次成功地掺入到生物膜即红细胞膜中,掺入产率约为每个红细胞1 - 3×10⁷个分子。渗透性研究表明,掺入BTBE后,含BTBE的红细胞的膜完整性没有显著改变。然后使用该探针研究过氧亚硝酸盐依赖性反应。向含BTBE的红细胞悬液中添加过氧亚硝酸盐导致BTBE硝化并分别二聚化为3 - 硝基 - BTBE和3,3'-二 - BTBE,这表明膜中存在过氧亚硝酸盐衍生的自由基反应。向红细胞中添加过氧亚硝酸盐还会导致膜相关蛋白的酪氨酸硝化。通过DMPO免疫自旋捕获检测蛋白衍生的自由基也表明了该过程的自由基性质。虽然细胞外二氧化碳的存在强烈抑制细胞内氧合血红蛋白的氧化,但另一方面,在≤500 microM时,过氧亚硝酸盐对膜蛋白和BTBE的硝化作用通常会增强,这支持了过氧亚硝酸盐衍生的自由基(即二氧化氮和碳酸根自由基)参与硝化过程。对具有不同再包封氧合血红蛋白含量的红细胞血影的研究证实了细胞内氧合血红蛋白作为硝化物种汇聚点的作用,因为随着血红蛋白浓度的增加,BTBE硝化和二聚化减少。总之,借助一种疏水性酪氨酸类似物,我们的结果表明,尽管红细胞内的氧合血红蛋白具有显著的过氧亚硝酸盐清除活性,但过氧亚硝酸盐仍可介导红细胞膜中自由基依赖性的硝化和二聚化过程。