Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay.
Chem Res Toxicol. 2010 Apr 19;23(4):821-35. doi: 10.1021/tx900446r.
Protein tyrosine dimerization and nitration by biologically relevant oxidants usually depend on the intermediate formation of tyrosyl radical (()Tyr). In the case of tyrosine oxidation in proteins associated with hydrophobic biocompartments, the participation of unsaturated fatty acids in the process must be considered since they typically constitute preferential targets for the initial oxidative attack. Thus, we postulate that lipid-derived radicals mediate the one-electron oxidation of tyrosine to ()Tyr, which can afterward react with another ()Tyr or with nitrogen dioxide (()NO(2)) to yield 3,3'-dityrosine or 3-nitrotyrosine within the hydrophobic structure, respectively. To test this hypothesis, we have studied tyrosine oxidation in saturated and unsaturated fatty acid-containing phosphatidylcholine (PC) liposomes with an incorporated hydrophobic tyrosine analogue BTBE (N-t-BOC l-tyrosine tert-butyl ester) and its relationship with lipid peroxidation promoted by three oxidation systems, namely, peroxynitrite, hemin, and 2,2'-azobis (2-amidinopropane) hydrochloride. In all cases, significant tyrosine (BTBE) oxidation was seen in unsaturated PC liposomes, in a way that was largely decreased at low oxygen concentrations. Tyrosine oxidation levels paralleled those of lipid peroxidation (i.e., malondialdehyde and lipid hydroperoxides), lipid-derived radicals and BTBE phenoxyl radicals were simultaneously detected by electron spin resonance spin trapping, supporting an association between the two processes. Indeed, alpha-tocopherol, a known reactant with lipid peroxyl radicals (LOO()), inhibited both tyrosine oxidation and lipid peroxidation induced by all three oxidation systems. Moreover, oxidant-stimulated liposomal oxygen consumption was dose dependently inhibited by BTBE but not by its phenylalanine analogue, BPBE (N-t-BOC l-phenylalanine tert-butyl ester), providing direct evidence for the reaction between LOO() and the phenol moiety in BTBE, with an estimated second-order rate constant of 4.8 x 10(3) M(-1) s(-1). In summary, the data presented herein demonstrate that LOO(*) mediates tyrosine oxidation processes in hydrophobic biocompartments and provide a new mechanistic insight to understand protein oxidation and nitration in lipoproteins and biomembranes.
蛋白质酪氨酸二聚化和硝化作用由生物相关氧化剂引起,通常依赖于酪氨酸自由基 (() Tyr) 的中间形成。在与疏水环境相关的蛋白质中酪氨酸氧化的情况下,必须考虑不饱和脂肪酸的参与,因为它们通常是初始氧化攻击的优先靶标。因此,我们假设脂质衍生的自由基介导酪氨酸向 () Tyr 的单电子氧化,随后 () Tyr 或二氧化氮 (() NO(2)) 可以与疏水环境中的另一个 () Tyr 反应,分别生成 3,3'-二酪氨酸或 3-硝基酪氨酸。为了验证这一假设,我们研究了含有疏水性酪氨酸类似物 BTBE(N-t-BOC l-酪氨酸叔丁酯)和其与三种氧化体系(过氧亚硝酸盐、血红素和 2,2'-偶氮双(2-脒基丙烷)盐酸盐)促进的脂质过氧化相关的饱和和不饱和脂肪酸的磷脂酰胆碱(PC)脂质体中的酪氨酸氧化。在所有情况下,不饱和 PC 脂质体中都观察到显著的酪氨酸(BTBE)氧化,在低氧浓度下,这种氧化程度大大降低。酪氨酸氧化水平与脂质过氧化(即丙二醛和脂质氢过氧化物)平行,通过电子自旋共振自旋捕获同时检测到脂质衍生的自由基和 BTBE 酚氧自由基,支持这两个过程之间的关联。事实上,α-生育酚,一种已知与脂质过氧自由基(LOO())反应的物质,抑制了所有三种氧化体系诱导的酪氨酸氧化和脂质过氧化。此外,氧化应激刺激的脂质体氧消耗与 BTBE 剂量依赖性抑制,但 BPBE(N-t-BOC l-苯丙氨酸叔丁酯)没有抑制,这为 LOO()与 BTBE 中酚部分之间的反应提供了直接证据,估计二级反应速率常数为 4.8 x 10(3) M(-1) s(-1)。总之,本文提供的证据表明 LOO() 介导疏水环境中酪氨酸氧化过程,并为理解脂蛋白和生物膜中蛋白质氧化和硝化提供了新的机制见解。