Meliker Jaymie R, AvRuskin Gillian A, Slotnick Melissa J, Goovaerts Pierre, Schottenfeld David, Jacquez Geoffrey M, Nriagu Jerome O
BioMedware, Inc., Ann Arbor, MI, USA.
Environ Res. 2008 Jan;106(1):42-50. doi: 10.1016/j.envres.2007.09.001. Epub 2007 Oct 17.
Arsenic is a pervasive contaminant in underground aquifers worldwide, yet documentation of health effects associated with low-to-moderate concentrations (<100microg/L) has been stymied by uncertainties in assessing long-term exposure. A critical component of assessing exposure to arsenic in drinking water is the development of models for predicting arsenic concentrations in private well water in the past; however, these models are seldom validated. The objective of this paper is to validate alternative spatial models of arsenic concentrations in private well water in southeastern Michigan.
From 1993 to 2002, the Michigan Department of Environmental Quality analyzed arsenic concentrations in water from 6050 private wells. This dataset was used to develop several spatial models of arsenic concentrations in well water: proxy wells based on nearest-neighbor relationships, averages across geographic regions, and geostatistically derived estimates based on spatial correlation and geologic factors. Output from these models was validated using arsenic concentrations measured in 371 private wells from 2003 to 2006.
The geostatisical model and nearest-neighbor approach outperformed the models based on geographic averages. The geostatistical model produced the highest degree of correlation using continuous data (Pearson's r=0.61; Spearman's rank rho=0.46) while the nearest-neighbor approach produced the strongest correlation (kappa(weighted)=0.58) using an a priori categorization of arsenic concentrations (<5, 5-9.99, 10-19.99, > or = 20microg/L). When the maximum contaminant level was used as a cut-off in a two-category classification (<10, > or =10microg/L), the nearest-neighbor approach and geostatistical model had similar values for sensitivity (0.62-0.63), specificity (0.80), negative predictive value (0.85), positive predictive value (0.53), and percent agreement (75%).
This validation study reveals that geostatistical modeling and nearest-neighbor approaches are effective spatial models for predicting arsenic concentrations in private well water. Further validation analyses in other regions are necessary to indicate how widely these findings may be generalized.
砷是全球地下含水层中普遍存在的污染物,然而,由于评估长期暴露存在不确定性,与低至中等浓度(<100微克/升)相关的健康影响记录一直受到阻碍。评估饮用水中砷暴露的一个关键组成部分是开发过去预测私人井水砷浓度的模型;然而,这些模型很少得到验证。本文的目的是验证密歇根州东南部私人井水砷浓度的替代空间模型。
1993年至2002年,密歇根州环境质量部分析了6050口私人井水的砷浓度。该数据集用于开发几种井水砷浓度的空间模型:基于最近邻关系的代理井、地理区域的平均值以及基于空间相关性和地质因素的地质统计学推导估计值。使用2003年至2006年在371口私人井中测量的砷浓度对这些模型的输出进行验证。
地质统计学模型和最近邻方法优于基于地理平均值的模型。地质统计学模型使用连续数据产生的相关性最高(皮尔逊r=0.61;斯皮尔曼等级rho=0.46),而最近邻方法使用砷浓度的先验分类(<5、5-9.99、10-19.99、≥20微克/升)产生的相关性最强(kappa(加权)=0.58)。当在两类分类(<10、≥10微克/升)中使用最大污染物水平作为截止值时,最近邻方法和地质统计学模型在灵敏度(0.62-0.63)、特异性(0.80)、阴性预测值(0.85)、阳性预测值(0.53)和一致率(75%)方面具有相似的值。
这项验证研究表明,地质统计学建模和最近邻方法是预测私人井水砷浓度的有效空间模型。需要在其他地区进行进一步的验证分析,以表明这些发现可以在多大范围内推广。