Bouzioukh Farima, Wilkinson George A, Adelmann Giselind, Frotscher Michael, Stein Valentin, Klein Rüdiger
Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, 82152 Munich-Martinsried, Germany.
J Neurosci. 2007 Oct 17;27(42):11279-88. doi: 10.1523/JNEUROSCI.3393-07.2007.
Long-lasting changes in synaptic function are thought to be the cellular basis for learning and memory and for activity-dependent plasticity during development. Long-term potentiation (LTP) and long-term depression (LTD) are two opposing forms of synaptic plasticity that help fine tune neural connections and possibly serve to store information in the brain. Eph receptor tyrosine kinases and their transmembrane ligands, the ephrinBs, have essential roles in certain forms of synaptic plasticity. At the CA3-CA1 hippocampal synapse, EphB2 and EphA4 receptors are critically involved in long-term plasticity independent of their cytoplasmic domains, suggesting that ephrinBs are the active signaling partners. In cell-based assays, ephrinB reverse signaling was previously shown to involve phosphotyrosine-dependent and postsynaptic density-95/Discs large/zona occludens-1 (PDZ) domain interaction-dependent pathways. Which reverse signaling mode is required at hippocampal synapses is unknown. To address this question, we used knock-in mice expressing mutant isoforms of ephrinB2 that are deficient in specific aspects of reverse signaling. Our analysis revealed that tyrosine phosphorylation sites in ephrinB2 are required to mediate normal hippocampal LTP, but not for LTD. Conversely, ephrinB2 lacking the C-terminal PDZ interaction site, but competent to undergo tyrosine phosphorylation, cannot mediate either form of long-term plasticity. Our results provide the first evidence for phosphotyrosine-dependent ephrinB reverse signaling in a neuronal network and for differential ephrinB2 reverse signaling in two forms of synaptic plasticity.
突触功能的长期变化被认为是学习、记忆以及发育过程中依赖活动的可塑性的细胞基础。长时程增强(LTP)和长时程抑制(LTD)是两种相反形式的突触可塑性,它们有助于微调神经连接,并可能在大脑中存储信息。Eph受体酪氨酸激酶及其跨膜配体ephrinBs在某些形式的突触可塑性中起重要作用。在CA3-CA1海马突触中,EphB2和EphA4受体在不依赖其胞质结构域的长期可塑性中起关键作用,这表明ephrinBs是活跃的信号转导伙伴。在基于细胞的实验中,先前已表明ephrinB反向信号传导涉及磷酸酪氨酸依赖性和突触后致密物-95/盘状大蛋白/紧密连接蛋白-1(PDZ)结构域相互作用依赖性途径。海马突触需要哪种反向信号传导模式尚不清楚。为了解决这个问题,我们使用了表达ephrinB2突变异构体的敲入小鼠,这些异构体在反向信号传导的特定方面存在缺陷。我们的分析表明,ephrinB2中的酪氨酸磷酸化位点是介导正常海马LTP所必需的,但对LTD不是必需的。相反,缺乏C末端PDZ相互作用位点但能够进行酪氨酸磷酸化的ephrinB2不能介导任何一种形式的长期可塑性。我们的结果为神经元网络中磷酸酪氨酸依赖性ephrinB反向信号传导以及两种形式的突触可塑性中ephrinB2反向信号传导的差异提供了首个证据。