Suppr超能文献

整合抑郁症中海马-前额叶回路障碍的临床与基因组分析

Integrating Clinical and Genomic Analyses of Hippocampal-Prefrontal Circuit Disorder in Depression.

作者信息

Yuan Naijun, Tang Kairui, Da Xiaoli, Gan Hua, He Liangliang, Li Xiaojuan, Ma Qingyu, Chen Jiaxu

机构信息

Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.

College of Pharmacy, Jinan University, Guangzhou, China.

出版信息

Front Genet. 2021 Feb 5;11:565749. doi: 10.3389/fgene.2020.565749. eCollection 2020.

Abstract

Major depressive disorder (MDD) is a prevalent, devastating and recurrent mental disease. Hippocampus (HIP)-prefrontal cortex (PFC) neural circuit abnormalities have been confirmed to exist in MDD; however, the gene-related molecular features of this circuit in the context of depression remain unclear. To clarify this issue, we performed gene set enrichment analysis (GSEA) to comprehensively analyze the genetic characteristics of the two brain regions and used weighted gene correlation network analysis (WGCNA) to determine the main depression-related gene modules in the HIP-PFC network. To clarify the regional differences and consistency for MDD, we also compared the expression patterns and molecular functions of the key modules from the two brain regions. The results showed that candidate modules related to clinical MDD of HIP and PFC, which contained with 363 genes and 225 genes, respectively. Ninety-five differentially expressed genes (DEGs) were identified in the HIP candidate module, and 51 DEGs were identified in the PFC candidate module, with only 11 overlapping DEGs in these two regional modules. Combined with the enrichment results, although there is heterogeneity in the molecular functions in the HIP-PFC network of depression, the regulation of the MAPK cascade, Ras protein signal transduction and Ephrin signaling were significantly enriched in both brain regions, indicating that these biological pathways play important roles in MDD pathogenesis. Additionally, the high coefficient protein-protein interaction (PPI) network was constructed via STRING, and the top-10 coefficient genes were identified as hub genes via the algorithm. In summary, the present study reveals the gene expression characteristics of MDD and identifies common and unique molecular features and patterns in the HIP-PFC network. Our results may provide novel clues from the gene function perspective to explain the pathogenic mechanism of depression and to aid drug development. Further research is needed to confirm these findings and to investigate the genetic regulation mechanisms of different neural networks in depression.

摘要

重度抑郁症(MDD)是一种常见、具有破坏性且易复发的精神疾病。海马体(HIP)-前额叶皮质(PFC)神经回路异常已被证实在MDD中存在;然而,在抑郁症背景下该回路的基因相关分子特征仍不清楚。为了阐明这个问题,我们进行了基因集富集分析(GSEA)以全面分析这两个脑区的遗传特征,并使用加权基因共表达网络分析(WGCNA)来确定HIP-PFC网络中与抑郁症相关的主要基因模块。为了阐明MDD的区域差异和一致性,我们还比较了来自这两个脑区的关键模块的表达模式和分子功能。结果表明,与临床MDD相关的HIP和PFC候选模块分别包含363个基因和225个基因。在HIP候选模块中鉴定出95个差异表达基因(DEG),在PFC候选模块中鉴定出51个DEG,这两个区域模块中只有11个重叠的DEG。结合富集结果,尽管抑郁症的HIP-PFC网络中的分子功能存在异质性,但丝裂原活化蛋白激酶(MAPK)级联反应、Ras蛋白信号转导和 Ephrin信号传导的调节在两个脑区均显著富集,表明这些生物学途径在MDD发病机制中起重要作用。此外,通过STRING构建了高系数蛋白质-蛋白质相互作用(PPI)网络,并通过该算法将前10个系数基因鉴定为枢纽基因。总之,本研究揭示了MDD的基因表达特征,并确定了HIP-PFC网络中常见和独特的分子特征及模式。我们的结果可能从基因功能角度提供新的线索,以解释抑郁症的发病机制并有助于药物开发。需要进一步研究来证实这些发现,并研究抑郁症中不同神经网络的遗传调控机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd99/7893101/9c5bd369af0e/fgene-11-565749-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验