Raake P W, Hinkel R, Müller S, Delker S, Kreuzpointner R, Kupatt C, Katus H A, Kleinschmidt J A, Boekstegers P, Müller O J
Department of Internal Medicine I, Grosshadern University Hospital, Ludwig-Maximilians-University, Munich, Germany.
Gene Ther. 2008 Jan;15(1):12-7. doi: 10.1038/sj.gt.3303035. Epub 2007 Oct 18.
Cornerstone for an efficient cardiac gene therapy is the need for a vector system, which enables selective and long-term expression of the gene of interest. In rodent animal models adeno-associated viral (AAV) vectors like AAV-6 have been shown to efficiently transduce cardiomyocytes. However, since significant species-dependent differences in transduction characteristics exist, large animal models are of imminent need for preclinical evaluations. We compared gene transfer efficiencies of AAV-6 and heparin binding site-deleted AAV-2 vectors in a porcine model. Application of the AAVs was performed by pressure-regulated retroinfusion of the anterior interventricular cardiac vein, which has been previously shown to efficiently deliver genes to the myocardium (3.5 x 10(10) viral genomes per animal; n=5 animals per group). All vectors harbored a luciferase reporter gene under control of a cytomegalovirus (CMV)-enhanced 1.5 kb rat myosin light chain promoter (CMV-MLC2v). Expression levels were evaluated 4 weeks after gene transfer by determining luciferase activities. To rule out a systemic spillover peripheral tissue was analyzed by PCR for the presence of vector genomes. Selective retroinfusion of AAV serotype 6 vectors into the anterior cardiac vein substantially increased reporter gene expression in the targeted distal left anterior descending (LAD) territory (65 943+/-31 122 vs control territory 294+/-69, P<0.05). Retroinfusion of AAV-2 vectors showed lower transgene expression, which could be increased with coadministration of recombinant human vascular endothelial growth factor (1365+/-707 no vascular endothelial growth factor (VEGF) vs 38 760+/-2448 with VEGF, P<0.05). Significant transgene expression was not detected in other organs than the heart, although vector genomes were detected also in the lung and liver. Thus, selective retroinfusion of AAV-6 into the coronary vein led to efficient long-term myocardial reporter gene expression in the targeted LAD area of the porcine heart. Coapplication of VEGF significantly increased transduction efficiency of AAV-2.
高效心脏基因治疗的基石是需要一种载体系统,该系统能够实现目的基因的选择性和长期表达。在啮齿动物模型中,腺相关病毒(AAV)载体如AAV-6已被证明能有效地转导心肌细胞。然而,由于转导特性存在显著的物种依赖性差异,因此迫切需要大动物模型进行临床前评估。我们在猪模型中比较了AAV-6和缺失肝素结合位点的AAV-2载体的基因转移效率。通过压力调节逆行灌注前室间心脏静脉来应用AAV,先前已证明该方法能有效地将基因递送至心肌(每只动物3.5×10¹⁰个病毒基因组;每组n = 5只动物)。所有载体都携带一个在巨细胞病毒(CMV)增强的1.5 kb大鼠肌球蛋白轻链启动子(CMV-MLC2v)控制下的荧光素酶报告基因。在基因转移4周后,通过测定荧光素酶活性来评估表达水平。为排除全身溢出,通过PCR分析外周组织中载体基因组的存在情况。将AAV血清型6载体选择性逆行灌注到心脏前静脉中,显著增加了靶向的左前降支(LAD)远端区域的报告基因表达(65 943±31 122 vs对照区域294±69,P<0.05)。AAV-2载体的逆行灌注显示转基因表达较低,与重组人血管内皮生长因子共同给药可增加转基因表达(无血管内皮生长因子(VEGF)时为1365±707,有VEGF时为38 760±2448,P<0.05)。除心脏外,在其他器官中未检测到显著的转基因表达,尽管在肺和肝脏中也检测到了载体基因组。因此,将AAV-6选择性逆行灌注到冠状静脉中可导致猪心脏靶向LAD区域高效的长期心肌报告基因表达。VEGF的共同应用显著提高了AAV-2的转导效率。