Kehr Dorothea, Salatzki Janek, Seger Birgit, Varadi Karl, Birkenstock Jennifer, Schlegel Philipp, Gao Erhe, Koch Walter J, Katus Hugo A, Frey Norbert, Riffel Johannes, André Florian, Peppel Karsten, Jungmann Andreas, Busch Martin, Pfannkuche Helga, Ritterhoff Julia, Most Patrick
Division of Molecular and Translational Cardiology (D.K., B.S., K.V., J.B., A.J., M.B., J. Ritterhoff, P.M.), University Hospital Heidelberg, Germany.
Department of Internal Medicine III (D.K., J.S., B.S., K.V., J.B., P.S., H.A.K., N.F., J. Riffel, F.A., A.J., J. Ritterhoff, P.M.), University Hospital Heidelberg, Germany.
Circ Heart Fail. 2025 Jul;18(7):e012479. doi: 10.1161/CIRCHEARTFAILURE.124.012479. Epub 2025 Jun 19.
Guided by long-term safety data for AAV5 (adeno-associated virus 5) in humans, our translational study investigated whether AAV5 effectively delivers genes to healthy and achieves therapeutic efficacy in dysfunctional human-sized hearts, using a clinically applicable mode of administration and vector dosages.
AAV-mediated cardiac gene transfer in pigs was performed by percutaneous catheter-based retrograde intravenous vector delivery, and vector genome and transgene expression levels determined by reverse transcription-polymerase chain reaction and immunoblotting. Postmyocardial infarction (MI) cardiac dysfunction porcine and murine models were generated by coronary catheter-based occlusion and ligation, respectively. The study end points left ventricular ejection fraction and left ventricular MI size, were measured by cardiac magnetic resonance imaging and echocardiography. Bulk myocardial RNA-sequencing and weighted gene correlation network analysis were used to link study end points to molecular pathway mechanisms. Safety was assessed by clinical chemistry, blood count and ECG.
In a first biodistribution study, AAV5 (1×10 vector genomes; vgs) with the reporter gene () achieved broad and homogenous transduction of healthy pig hearts 30 days after catheter-based retrograde intravenous vector delivery without toxicity. Both its myocardial and extra-cardiac distribution patterns were advantageous compared with AAV9- and AAV6-. Using AAV5 with the cardioprotective human gene (; 1×10 vgcs) by catheter-based retrograde intravenous vector delivery in a subsequent therapy study in post-MI pigs prevented left ventricular MI extension and improved left ventricular ejection fraction after 3 months without clinical toxicity. Weighted gene correlation network analysis linked novel antiinflammatory actions and cardioprotective signaling mechanisms by hS100A1 to study end point improvements, which was confirmed in a post-MI mouse model.
Providing the clinically relevant proof of concept for AAV5 to effectively transduce healthy and dysfunctional human-sized hearts, its clinical long-term safety, scalable producibility, and low preexisting immunity in humans may predestine AAV5 as an effective and safe gene carrier for a prevalent disease such as chronic heart failure, using therapeutic genetic effectors such as or others.
在AAV5(腺相关病毒5型)人类长期安全性数据的指导下,我们的转化研究调查了AAV5是否能以临床适用的给药方式和载体剂量,有效地将基因传递到健康的、人类大小的功能失调心脏中,并实现治疗效果。
通过基于经皮导管的逆行静脉载体递送在猪中进行AAV介导的心脏基因转移,并通过逆转录-聚合酶链反应和免疫印迹法测定载体基因组和转基因表达水平。分别通过基于冠状动脉导管的闭塞和结扎建立心肌梗死后(MI)心脏功能障碍的猪和小鼠模型。通过心脏磁共振成像和超声心动图测量研究终点左心室射血分数和左心室MI大小。使用大量心肌RNA测序和加权基因共表达网络分析将研究终点与分子途径机制联系起来。通过临床化学、血细胞计数和心电图评估安全性。
在第一项生物分布研究中,携带报告基因()的AAV5(1×10载体基因组;vg)在基于导管的逆行静脉载体递送30天后实现了对健康猪心脏的广泛且均匀的转导,且无毒性。与AAV9和AAV6相比,其心肌和心脏外分布模式均具有优势。在随后一项针对心肌梗死后猪的治疗研究中,通过基于导管的逆行静脉载体递送使用携带心脏保护人类基因(;1×10 vgcs)的AAV5,3个月后可防止左心室MI扩展并改善左心室射血分数,且无临床毒性。加权基因共表达网络分析将hS100A1的新型抗炎作用和心脏保护信号机制与研究终点的改善联系起来,这在心肌梗死后小鼠模型中得到了证实。
为AAV5有效转导健康和功能失调的人类大小心脏提供了临床相关的概念验证,其临床长期安全性、可扩展的生产能力以及人类中较低水平的预先存在免疫,可能使AAV5成为使用诸如或其他治疗性遗传效应物治疗慢性心力衰竭等常见疾病的有效且安全的基因载体。