Du Li, Shen Liangliang, Yu Zhiguo, Chen Jing, Guo Yuewei, Tang Yun, Shen Xu, Jiang Hualiang
Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China.
ChemMedChem. 2008 Jan;3(1):173-80. doi: 10.1002/cmdc.200700223.
HIV-1 integrase (IN) is composed of three domains, the N-terminal domain (NTD, residues 1-50), the catalytic core domain (CCD, residues 51-212), and the C-terminal domain (CTD, residues 213-288). All the three domains are required for the two known integration reactions. CCD contains the catalytic triad and is believed to bind viral DNA specifically, and CTD binds viral DNA in a nonspecific manner. As no clear evidence has confirmed the involvement of NTD in DNA binding directly, NTD has not been seriously considered and less is known about its function in viral replication. In the current work, using a SPR technology-based assay, the HIV-1 viral DNA was determined to bind directly to NTD with a K(D) value of 8.8 microM, suggesting that the process of preintegrated complex formation for HIV-1 IN might involve the direct interaction of NTD with viral DNA in addition to binding of viral DNA to the catalytic core domain and C-terminal domain. Moreover, such viral DNA/IN binding could be inhibited by the marine product hyrtiosal from the marine sponge Hyrtios erectus with an IC(50) of 9.60+/-0.86 microM. Molecular dynamic analysis correlated with a site-directed mutagenesis approach further revealed that such hyrtiosal-induced viral DNA/IN binding inhibition was caused by the fact that hyrtiosal could bind HIV-1 NTD at Ser17, Trp19, and Lys34. As hyrtiosal was recently discovered by us as a protein tyrosine phosphatase 1B (PTP1B) inhibitor,1 this work might also supply multiple-target information for this marine product, and the verified HIV-NTD/HIV-1 IN interaction model could have further implications for new HIV-1 IN inhibitor design and evaluation.
HIV-1整合酶(IN)由三个结构域组成,即N端结构域(NTD,第1至50位氨基酸残基)、催化核心结构域(CCD,第51至212位氨基酸残基)和C端结构域(CTD,第213至288位氨基酸残基)。已知的两种整合反应都需要这三个结构域。CCD包含催化三联体,被认为能特异性结合病毒DNA,而CTD以非特异性方式结合病毒DNA。由于没有明确证据证实NTD直接参与DNA结合,NTD一直未受到重视,对其在病毒复制中的功能了解也较少。在当前研究中,使用基于表面等离子体共振(SPR)技术的检测方法,确定HIV-1病毒DNA能直接与NTD结合,解离常数(K(D))为8.8微摩尔,这表明HIV-1整合酶形成前整合复合物的过程可能除了病毒DNA与催化核心结构域及C端结构域结合外,还涉及NTD与病毒DNA的直接相互作用。此外,来自海绵Hyrtios erectus的海洋产物hyrtiosal可抑制这种病毒DNA/整合酶的结合,半数抑制浓度(IC(50))为9.60±0.86微摩尔。分子动力学分析结合定点诱变方法进一步揭示,这种hyrtiosal诱导的病毒DNA/整合酶结合抑制是由于hyrtiosal能在第17位丝氨酸、第19位色氨酸和第34位赖氨酸处结合HIV-1 NTD。由于我们最近发现hyrtiosal是一种蛋白酪氨酸磷酸酶1B(PTP1B)抑制剂,这项研究也可能为该海洋产物提供多靶点信息,且经过验证的HIV-NTD/HIV-1整合酶相互作用模型可能对新型HIV-1整合酶抑制剂的设计和评估有进一步的启示。