Nawab S Hamid, Wotiz Robert P, De Luca Carlo J
Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1252-5. doi: 10.1109/IEMBS.2006.260320.
The precision decomposition technique can accurately identify a significant number of action potential trains within intramuscular electromyographic (EMG) signals. The original version of this technique (PD I) often requires extensive user-interactive editing to improve upon the results from a maximum a-posteriori probability receiver (MAPR). We have used the integrated processing and understanding of signals methodology from artificial intelligence to formulate and implement a new multi-receiver solution that augments MAPR with two other receivers to gain greater accuracy. Specifically, each new receiver utilizes an interleaving of signal and symbol processing stages to address MAPR inadequacies in resolving cases of acute superposition and shape instability among motor unit trains. Prior to any user-interactive editing, our multi-receiver system achieves a classification accuracy of 85.1%, a significant improvement over the 66.0% accuracy of PD I on the same database of challenging EMG signals.
精确分解技术能够准确识别肌内肌电图(EMG)信号中的大量动作电位序列。该技术的原始版本(PD I)通常需要大量用户交互编辑,以改进最大后验概率接收器(MAPR)的结果。我们利用人工智能中的信号综合处理与理解方法,制定并实施了一种新的多接收器解决方案,该方案通过增加另外两个接收器来增强MAPR,以提高准确性。具体而言,每个新接收器利用信号和符号处理阶段的交织来解决MAPR在解决运动单位序列之间的急性叠加和形状不稳定性情况时的不足。在进行任何用户交互编辑之前,我们的多接收器系统实现了85.1%的分类准确率,相较于在相同具有挑战性的EMG信号数据库上PD I的66.0%准确率有了显著提高。