Suppr超能文献

肌内肌电信号的自动分解

Automated decomposition of intramuscular electromyographic signals.

作者信息

Florestal Joël R, Mathieu Pierre A, Malanda Armando

机构信息

Institute of Biomedical Engineering, Université de Montréal, QC, Canada.

出版信息

IEEE Trans Biomed Eng. 2006 May;53(5):832-9. doi: 10.1109/TBME.2005.863893.

Abstract

We present a novel method for extracting and classifying motor unit action potentials (MUAPs) from one-channel electromyographic recordings. The extraction of MUAP templates is carried out using a symbolic representation of waveforms, a common technique in signature verification applications. The assignment of MUAPs to their specific trains is achieved by means of repeated template matching passes using pseudocorrelation, a new matched-filter-based similarity measure. Identified MUAPs are peeled off and the residual signal is analyzed using shortened templates to facilitate the resolution of superimpositions. The program was tested with simulated data and with experimental signals obtained using fine-wire electrodes in the biceps brachii during isometric contractions ranging from 5% to 30% of the maximum voluntary contraction. Analyzed signals were made of up to 14 MUAP trains. Most templates were extracted automatically, but complex signals sometimes required the adjustment of 2 parameters to account for all the MUAP trains present. Classification accuracy rates for simulations ranged from an average of 96.3% +/- 0.9% (4 trains) to 75.6% +/- 11.0% (12 trains). The classification portion of the program never required user intervention. Decomposition of most 10-s-long signals required less than 10 s using a conventional desktop computer, thus showing capabilities for real-time applications.

摘要

我们提出了一种从单通道肌电图记录中提取和分类运动单位动作电位(MUAPs)的新方法。MUAP模板的提取是使用波形的符号表示来进行的,这是签名验证应用中的一种常用技术。通过使用伪相关(一种基于匹配滤波器的新相似性度量)进行重复的模板匹配过程,将MUAPs分配到其特定的序列中。识别出的MUAPs被剥离,然后使用缩短的模板对残余信号进行分析,以促进对叠加信号的分辨。该程序用模拟数据以及在肱二头肌等长收缩过程中使用细丝电极获得的实验信号进行了测试,收缩强度范围为最大自主收缩的5%至30%。分析的信号由多达14个MUAP序列组成。大多数模板是自动提取的,但复杂信号有时需要调整两个参数以考虑所有存在的MUAP序列。模拟的分类准确率范围从平均96.3%±0.9%(4个序列)到75.6%±11.0%(12个序列)。该程序的分类部分从未需要用户干预。使用传统台式计算机,对大多数10秒长的信号进行分解所需时间不到10秒,因此显示出了实时应用的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验