Chu Jun-Uk, Moon Inhyuk, Mun Mu-Seong
Korea Orthopedics & Rehabilitation Eng. Center, Incheon, Korea.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2417-20. doi: 10.1109/IEMBS.2006.259659.
EMG pattern recognition is essential for the control of a multifunction myoelectric hand. The main goal of this study is to develop an efficient feature projection method for EMG pattern recognition. To this end, we propose a linear supervised feature projection that utilizes linear discriminant analysis (LDA). We first perform wavelet packet transform (WPT) to extract the feature vector from four channel EMG signals. For dimensionality reduction and clustering of the WPT features, the LDA incorporates class information into the learning procedure and finds a linear matrix to maximize the class separability for the projected features. Finally, the multilayer perceptron (MLP) classifies the LDA-reduced features into nine hand motions. To evaluate the performance of LDA for the WPT features, we compare LDA with three other feature projection methods. From a visualization and quantitative comparison, we show that LDA has better performance for the class separability, and the LDA-projected features improve the classification accuracy with a short processing time. We implemented a real-time control system for a multifunction myoelectric hand. In experiment, we show that the proposed method achieves 97.2% recognition accuracy, and that all processes, including the myoelectric hand control, are completed within 97 msec.
肌电图模式识别对于多功能肌电手的控制至关重要。本研究的主要目标是开发一种用于肌电图模式识别的高效特征投影方法。为此,我们提出一种利用线性判别分析(LDA)的线性监督特征投影方法。我们首先执行小波包变换(WPT)以从四通道肌电信号中提取特征向量。为了对WPT特征进行降维和聚类,LDA将类别信息纳入学习过程,并找到一个线性矩阵以最大化投影特征的类别可分离性。最后,多层感知器(MLP)将经LDA降维后的特征分类为九种手部动作。为了评估LDA对WPT特征的性能,我们将LDA与其他三种特征投影方法进行比较。通过可视化和定量比较,我们表明LDA在类别可分离性方面具有更好的性能,并且经LDA投影的特征在较短的处理时间内提高了分类准确率。我们实现了一个用于多功能肌电手的实时控制系统。在实验中,我们表明所提出的方法实现了97.2%的识别准确率,并且包括肌电手控制在内的所有过程都在97毫秒内完成。