Suppr超能文献

基于多通道脑电图的新生儿癫痫检测。

Multi-channel EEG based neonatal seizure detection.

作者信息

Greene Barry R, Reilly Richard B, Boylan Geraldine, de Chazal Philip, Connolly Sean

机构信息

Sch. of Electr., Electron. & Mech. Eng., Univ. Coll. Dublin, Ireland.

出版信息

Conf Proc IEEE Eng Med Biol Soc. 2006;2006:4679-84. doi: 10.1109/IEMBS.2006.260461.

Abstract

A multi-channel method for patient specific and patient independent, EEG based neonatal seizure detection is presented. Two classifier configurations are proposed and tested, along with a number of classifier models. Existing methods for neonatal seizure detection have been empirical threshold based or based on a single EEG channel. The optimum patient specific classifier for EEG based neonatal seizure detection was found to be an Early Integration configuration employing a linear discriminant classifier model. This yielded a mean classification accuracy of 74.66% for 11 neonatal records. The optimum patient independent classifier was an Early Integration configuration with a linear discriminant classifier model giving a mean accuracy of 72.81%

摘要

本文提出了一种基于脑电图(EEG)的多通道方法,用于针对特定患者和不依赖患者的新生儿癫痫检测。提出并测试了两种分类器配置以及多种分类器模型。现有的新生儿癫痫检测方法基于经验阈值或单一EEG通道。基于EEG的新生儿癫痫检测的最佳特定患者分类器是采用线性判别分类器模型的早期集成配置。对于11份新生儿记录,其平均分类准确率为74.66%。最佳的不依赖患者的分类器是采用线性判别分类器模型的早期集成配置,平均准确率为72.81%

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验