Neonatal Brain Research Group, University College Cork, Ireland.
Neonatal Brain Research Group, University College Cork, Ireland.
Clin Neurophysiol. 2011 Mar;122(3):474-482. doi: 10.1016/j.clinph.2010.06.035. Epub 2010 Aug 15.
This study discusses an appropriate framework to measure system performance for the task of neonatal seizure detection using EEG. The framework is used to present an extended overview of a multi-channel patient-independent neonatal seizure detection system based on the Support Vector Machine (SVM) classifier.
The appropriate framework for performance assessment of neonatal seizure detectors is discussed in terms of metrics, experimental setups, and testing protocols. The neonatal seizure detection system is evaluated in this framework. Several epoch-based and event-based metrics are calculated and curves of performance are reported. A new metric to measure the average duration of a false detection is proposed to accompany the event-based metrics. A machine learning algorithm (SVM) is used as a classifier to discriminate between seizure and non-seizure EEG epochs. Two post-processing steps proposed to increase temporal precision and robustness of the system are investigated and their influence on various metrics is shown. The resulting system is validated on a large clinical dataset of 267h.
In this paper, it is shown how a complete set of metrics and a specific testing protocol are necessary to extensively describe neonatal seizure detection systems, objectively assess their performance and enable comparison with existing alternatives. The developed system currently represents the best published performance to date with an ROC area of 96.3%. The sensitivity and specificity were ~90% at the equal error rate point. The system was able to achieve an average good detection rate of ~89% at a cost of 1 false detection per hour with an average false detection duration of 2.7 min.
It is shown that to accurately assess the performance of EEG-based neonatal seizure detectors and to facilitate comparison with existing alternatives, several metrics should be reported and a specific testing protocol should be followed. It is also shown that reporting only event-based metrics can be misleading as they do not always reflect the true performance of the system.
This is the first study to present a thorough method for performance assessment of EEG-based seizure detection systems. The evaluated SVM-based seizure detection system can greatly assist clinical staff, in a neonatal intensive care unit, to interpret the EEG.
本研究讨论了一种适用于使用 EEG 进行新生儿癫痫检测任务的系统性能评估框架。该框架用于呈现基于支持向量机 (SVM) 分类器的多通道患者独立新生儿癫痫检测系统的扩展概述。
根据度量标准、实验设置和测试协议讨论了用于评估新生儿癫痫检测器性能的适当框架。在该框架中评估了新生儿癫痫检测系统。计算了几种基于epoch 的和基于事件的度量标准,并报告了性能曲线。提出了一种新的度量标准来衡量假阳性检测的平均持续时间,以伴随基于事件的度量标准。使用机器学习算法 (SVM) 作为分类器来区分癫痫和非癫痫 EEG 时段。研究了两个后处理步骤,以提高系统的时间精度和鲁棒性,并展示了它们对各种度量标准的影响。所得到的系统在 267 小时的大型临床数据集上进行了验证。
本文展示了如何使用一整套度量标准和特定的测试协议来全面描述新生儿癫痫检测系统,客观评估其性能,并能够与现有替代方案进行比较。所开发的系统目前代表了迄今为止发表的最佳性能,ROC 面积为 96.3%。在等错误率点,灵敏度和特异性约为 90%。系统能够以每小时 1 次假阳性检测的代价实现约 89%的平均良好检测率,平均假阳性检测持续时间为 2.7 分钟。
研究表明,要准确评估基于 EEG 的新生儿癫痫检测器的性能,并促进与现有替代方案的比较,应报告多个度量标准并遵循特定的测试协议。还表明,仅报告基于事件的度量标准可能会产生误导,因为它们并不总是反映系统的真实性能。
这是第一项提出用于评估基于 EEG 的癫痫检测系统性能的全面方法的研究。评估的基于 SVM 的癫痫检测系统可以极大地帮助新生儿重症监护病房的临床工作人员解释 EEG。