Suppr超能文献

用于自动心脏容积提取的心脏PET透射图像的无监督分割

Unsupervised segmentation of cardiac PET transmission images for automatic heart volume extraction.

作者信息

Juslin Anu, Tohka Jussi

机构信息

Institute of Signal Processing, Tampere University of Technology, Tampere, Finland.

出版信息

Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1077-80. doi: 10.1109/IEMBS.2006.259416.

Abstract

In this study, we propose an automatic method to extract the heart volume from the cardiac positron emission tomography (PET) transmission images. The method combines the automatic 3D segmentation of the transmission image using Markov random fields (MRFs) to surface extraction using deformable models. Deformable models were automatically initialized using the MRFs segmentation result. The extraction of the heart region is needed e.g. in independent component analysis (ICA). The volume of the heart can be used to mask the emission image corresponding to the transmission image, so that only the cardiac region is used for the analysis. The masking restricts the number of independent components and reduces the computation time. In addition, the MRF segmentation result could be used for attenuation correction. The method was tested with 25 patient images. The MRF segmentation results were of good quality in all cases and we were able to extract the heart volume from all the images.

摘要

在本研究中,我们提出了一种从心脏正电子发射断层扫描(PET)透射图像中提取心脏体积的自动方法。该方法将使用马尔可夫随机场(MRF)对透射图像进行自动三维分割与使用可变形模型进行表面提取相结合。可变形模型使用MRF分割结果自动初始化。例如,在独立成分分析(ICA)中需要提取心脏区域。心脏体积可用于掩盖与透射图像对应的发射图像,以便仅将心脏区域用于分析。这种掩盖限制了独立成分的数量并减少了计算时间。此外,MRF分割结果可用于衰减校正。该方法用25例患者图像进行了测试。在所有情况下,MRF分割结果质量良好,我们能够从所有图像中提取心脏体积。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验