Wolbrecht Eric T, Leavitt John, Reinkensmeyer David J, Bobrow James E
Mech. & Aerosp. Eng. Dept., Univ. California, Irvine, CA 92697, USA.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2687-93. doi: 10.1109/IEMBS.2006.259941.
A key challenge in rehabilitation robotics is the development of a lightweight, large force, high degrees-of-freedom device that can assist in functional rehabilitation of the arm. Pneumatic actuators can potentially help meet this challenge because of their high power-to-weight ratio. They are currently not widely used for rehabilitation robotics because they are difficult to control. This paper describes the control development of a pneumatically actuated, upper extremity orthosis for rehabilitation after stroke. To provide the sensing needed for good pneumatic control, position and velocity of the robot are estimated by a unique implementation of a Kalman filter using MEMS accelerometers. To compensate for the nonlinear behavior of the pneumatic servovalves, force control is achieved using a new method for air flow mapping using experimentally measured data in a least-squares regression. To help patients move with an inherently compliant robot, a high level controller that assists only as needed in reaching exercises is developed. This high level controller differs from traditional trajectory-based, position controllers, allowing free voluntary movements toward a target while resisting movements away from the target. When the target cannot be reached voluntarily, the controller slowly builds up force, pushing the arm toward the target. As each target position is reached, the controller builds an internal model of the subject's capability, learning the forces necessary to complete movements. Preliminary testing performed on a non-disabled subject demonstrated the ability of the orthosis to complete reaching movements with graded assistance and to adapt to the effort level of the subject. Thus, the orthosis is a promising tool for upper extremity rehabilitation after stroke.
康复机器人技术面临的一个关键挑战是开发一种轻便、大力、高自由度的设备,以协助手臂的功能康复。气动执行器因其高功率重量比,有可能帮助应对这一挑战。它们目前在康复机器人技术中尚未广泛应用,因为难以控制。本文描述了一种用于中风后康复的气动上肢矫形器的控制开发。为了提供良好气动控制所需的传感,通过使用MEMS加速度计的卡尔曼滤波器的独特实现方式来估计机器人的位置和速度。为了补偿气动伺服阀的非线性行为,使用一种新的气流映射方法,通过最小二乘回归中的实验测量数据来实现力控制。为了帮助患者使用本质上柔顺的机器人进行移动,开发了一种仅在伸展运动中按需辅助的高级控制器。这种高级控制器不同于传统的基于轨迹的位置控制器,允许自由地向目标进行自主运动,同时抵抗远离目标的运动。当无法自主到达目标时,控制器会缓慢增加力,将手臂推向目标。当到达每个目标位置时,控制器会建立受试者能力的内部模型,学习完成运动所需的力。在非残疾受试者上进行的初步测试证明了该矫形器能够在分级辅助下完成伸展运动,并适应受试者的努力程度。因此,该矫形器是中风后上肢康复的一种有前景的工具。