Jenkins Odest Chadwicke
Dept. of Comput. Sci., Brown Univ., Providence, RI 02912-1910, USA.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2722-5. doi: 10.1109/IEMBS.2006.259857.
We investigate the use of five dimension reduction and manifold learning techniques to estimate a 2D subspace of hand poses for the purpose of generating motion. Our aim is to uncover a 2D parameterization from optical motion capture data that allows for transformation sparse user input trajectories into desired hand movements. The use of shape descriptors for representing hand pose is additionally explored for dealing with occluded parts of the hand during data collection. We present early results from uncovering 2D parameterizations of power and precision grasps and their use to drive a physically simulated hand from 2D mouse input.
我们研究使用五种降维和流形学习技术来估计手部姿势的二维子空间,以生成运动。我们的目标是从光学运动捕捉数据中发现一种二维参数化方法,该方法能够将稀疏的用户输入轨迹转换为所需的手部动作。此外,我们还探索了使用形状描述符来表示手部姿势,以处理数据收集过程中手部被遮挡的部分。我们展示了从发现抓握力和精确抓握的二维参数化及其用于从二维鼠标输入驱动物理模拟手部的早期结果。