Suppr超能文献

人机界面的学习算法

Learning algorithms for human-machine interfaces.

作者信息

Danziger Zachary, Fishbach Alon, Mussa-Ivaldi Ferdinando A

机构信息

Northwestern University, Evanston, IL 60208, USA.

出版信息

IEEE Trans Biomed Eng. 2009 May;56(5):1502-11. doi: 10.1109/TBME.2009.2013822. Epub 2009 Feb 6.

Abstract

The goal of this study is to create and examine machine learning algorithms that adapt in a controlled and cadenced way to foster a harmonious learning environment between the user and the controlled device. To evaluate these algorithms, we have developed a simple experimental framework. Subjects wear an instrumented data glove that records finger motions. The high-dimensional glove signals remotely control the joint angles of a simulated planar two-link arm on a computer screen, which is used to acquire targets. A machine learning algorithm was applied to adaptively change the transformation between finger motion and the simulated robot arm. This algorithm was either LMS gradient descent or the Moore-Penrose (MP) pseudoinverse transformation. Both algorithms modified the glove-to-joint angle map so as to reduce the endpoint errors measured in past performance. The MP group performed worse than the control group (subjects not exposed to any machine learning), while the LMS group outperformed the control subjects. However, the LMS subjects failed to achieve better generalization than the control subjects, and after extensive training converged to the same level of performance as the control subjects. These results highlight the limitations of coadaptive learning using only endpoint error reduction.

摘要

本研究的目标是创建并检验以可控且有节奏的方式进行自适应的机器学习算法,以营造用户与受控设备之间和谐的学习环境。为评估这些算法,我们开发了一个简单的实验框架。受试者佩戴一个记录手指动作的仪器化数据手套。高维手套信号远程控制计算机屏幕上模拟平面双连杆臂的关节角度,该双连杆臂用于获取目标。应用机器学习算法来自适应地改变手指动作与模拟机器人手臂之间的变换。此算法要么是最小均方(LMS)梯度下降算法,要么是摩尔-彭罗斯(MP)伪逆变换算法。两种算法都修改了手套到关节角度的映射,以减少在过去表现中测得的端点误差。MP组的表现比对照组(未接触任何机器学习的受试者)更差,而LMS组的表现优于对照受试者。然而,LMS组的受试者未能比对照受试者实现更好的泛化,并且在经过大量训练后,收敛到与对照受试者相同的表现水平。这些结果凸显了仅使用端点误差减少进行协同自适应学习的局限性。

相似文献

1
Learning algorithms for human-machine interfaces.
IEEE Trans Biomed Eng. 2009 May;56(5):1502-11. doi: 10.1109/TBME.2009.2013822. Epub 2009 Feb 6.
2
Adapting human-machine interfaces to user performance.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4486-90. doi: 10.1109/IEMBS.2008.4650209.
3
Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems.
J Neural Eng. 2017 Jun;14(3):036024. doi: 10.1088/1741-2552/aa66e0. Epub 2017 Mar 15.
4
A brain-machine interface to navigate a mobile robot in a planar workspace: enabling humans to fly simulated aircraft with EEG.
IEEE Trans Neural Syst Rehabil Eng. 2013 Mar;21(2):306-18. doi: 10.1109/TNSRE.2012.2233757. Epub 2012 Dec 13.
5
SLAM algorithm applied to robotics assistance for navigation in unknown environments.
J Neuroeng Rehabil. 2010 Feb 17;7:10. doi: 10.1186/1743-0003-7-10.
6
A switching regime model for the EMG-based control of a robot arm.
IEEE Trans Syst Man Cybern B Cybern. 2011 Feb;41(1):53-63. doi: 10.1109/TSMCB.2010.2045120. Epub 2010 Apr 15.
7
Proportional estimation of finger movements from high-density surface electromyography.
J Neuroeng Rehabil. 2016 Aug 4;13(1):73. doi: 10.1186/s12984-016-0172-3.
8
Effective and natural human-robot interaction requires multidisciplinary research.
Sci Robot. 2021 Sep 29;6(58):eabl7022. doi: 10.1126/scirobotics.abl7022.
9
2D subspaces for sparse control of high-DOF robots.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2722-5. doi: 10.1109/IEMBS.2006.259857.
10
The body-machine interface: a new perspective on an old theme.
J Mot Behav. 2012;44(6):419-33. doi: 10.1080/00222895.2012.700968.

引用本文的文献

4
Guiding functional reorganization of motor redundancy using a body-machine interface.
J Neuroeng Rehabil. 2020 May 11;17(1):61. doi: 10.1186/s12984-020-00681-7.
5
The dynamics of motor learning through the formation of internal models.
PLoS Comput Biol. 2019 Dec 20;15(12):e1007118. doi: 10.1371/journal.pcbi.1007118. eCollection 2019 Dec.
7
Learning new movements after paralysis: Results from a home-based study.
Sci Rep. 2017 Jul 6;7(1):4779. doi: 10.1038/s41598-017-04930-z.
8
Physiological properties of brain-machine interface input signals.
J Neurophysiol. 2017 Aug 1;118(2):1329-1343. doi: 10.1152/jn.00070.2017. Epub 2017 Jun 14.
9
Static Versus Dynamic Decoding Algorithms in a Non-Invasive Body-Machine Interface.
IEEE Trans Neural Syst Rehabil Eng. 2017 Jul;25(7):893-905. doi: 10.1109/TNSRE.2016.2640360. Epub 2016 Dec 15.
10

本文引用的文献

1
A review of classification algorithms for EEG-based brain-computer interfaces.
J Neural Eng. 2007 Jun;4(2):R1-R13. doi: 10.1088/1741-2560/4/2/R01. Epub 2007 Jan 31.
2
Neuronal ensemble control of prosthetic devices by a human with tetraplegia.
Nature. 2006 Jul 13;442(7099):164-71. doi: 10.1038/nature04970.
3
Bayesian population decoding of motor cortical activity using a Kalman filter.
Neural Comput. 2006 Jan;18(1):80-118. doi: 10.1162/089976606774841585.
4
Remapping hand movements in a novel geometrical environment.
J Neurophysiol. 2005 Dec;94(6):4362-72. doi: 10.1152/jn.00380.2005. Epub 2005 Sep 7.
5
Statistical encoding model for a primary motor cortical brain-machine interface.
IEEE Trans Biomed Eng. 2005 Jul;52(7):1312-22. doi: 10.1109/TBME.2005.847542.
6
Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans.
Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54. doi: 10.1073/pnas.0403504101. Epub 2004 Dec 7.
7
BCI2000: a general-purpose brain-computer interface (BCI) system.
IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43. doi: 10.1109/TBME.2004.827072.
8
Modeling and decoding motor cortical activity using a switching Kalman filter.
IEEE Trans Biomed Eng. 2004 Jun;51(6):933-42. doi: 10.1109/TBME.2004.826666.
9
Adaptive BCI based on variational Bayesian Kalman filtering: an empirical evaluation.
IEEE Trans Biomed Eng. 2004 May;51(5):719-27. doi: 10.1109/TBME.2004.824128.
10
Spatiotemporal tuning of motor cortical neurons for hand position and velocity.
J Neurophysiol. 2004 Jan;91(1):515-32. doi: 10.1152/jn.00587.2002. Epub 2003 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验