Chiang Jason, Studniberg Michael, Shaw Jack, Seto Shaw, Truong Kevin
Dept. of Electr. & Comput. Eng., Toronto Univ., ON, Canada.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:5787-9. doi: 10.1109/IEMBS.2006.260286.
To infer homology and subsequently gene function, the Smith-Waterman algorithm is used to find the optimal local alignment between two sequences. When searching sequence databases that may contain billions of sequences, this algorithm becomes computationally expensive. Consequently, in this paper, we focused on accelerating the Smith-Waterman algorithm by modifying the computationally repeated portion of the algorithm by FPGA hardware custom instructions. These simple modifications accelerated the algorithm runtime by an average of 287% compared to the pure software implementation. Therefore, further design of FPGA accelerated hardware offers a promising direction to seeking runtime improvement of genomic database searching.
为了推断同源性并进而确定基因功能,使用史密斯-沃特曼算法来寻找两个序列之间的最优局部比对。当搜索可能包含数十亿个序列的序列数据库时,该算法的计算成本变得很高。因此,在本文中,我们专注于通过现场可编程门阵列(FPGA)硬件定制指令修改算法中计算重复的部分来加速史密斯-沃特曼算法。与纯软件实现相比,这些简单的修改使算法运行时间平均加快了287%。因此,进一步设计FPGA加速硬件为寻求基因组数据库搜索运行时间的改进提供了一个有前景的方向。