Spalazzi Jeffrey P, Dagher Elias, Doty Stephen B, Guo X Edward, Rodeo Scott A, Lu Helen H
Dept. of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:525-8. doi: 10.1109/IEMBS.2006.259296.
The widespread clinical implementation of hamstring tendon (HT) autografts for anterior cruciate ligament (ACL) reconstruction is currently limited by the unpredictable integration of the graft with subchondral bone and a lack of devices that are capable of promoting biological fixation of HT grafts to bone. The site of HT graft fixation within the bone tunnel has been identified as the weak point in the reconstructed ACL, likely due to the failure of the graft to reestablish the physiological tendon-bone interface capable of transmitting load from the ligament to bone while minimizing stress concentration at the interface. Although a fibrovascular tissue has been shown to form at the graft-bone interface, this fibrovascular tissue is non-anatomically oriented compared to the native fibrocartilage found at direct ligament to bone insertions. Interface tissue engineering embodies a new approach for graft fixation, focusing on securing tendon grafts to bone via biological fixation wherein the complex functional interface found natively at tendon and ligament junctions with bone are regenerated at the graft insertion site into the bone tunnels. This study focuses on the in vivo evaluation of a novel biomimetic, triphasic scaffold system co-cultured with relevant cell types found at the graft-bone interface, specifically fibroblasts, chondrocytes, and osteoblasts. The scaffold is intended to promote biological fixation of HT grafts to bone by guiding the reestablishment of an anatomically-oriented and mechanically functional fibrocartilage interfacial region. It was found that the cell-seeded triphasic scaffolds supported cellular interactions as well as tissue infiltration and abundant matrix production in vivo. In addition, controlled phase-specific matrix heterogeneity was induced on the scaffold, with distinct mineral and interface-like tissue regions. The results of this study demonstrate the feasibility of multi-tissue regeneration on a single graft, as well as th- e potential of interface tissue engineering to enable the biological fixation of soft tissue grafts to bone.
目前,腘绳肌腱(HT)自体移植用于前交叉韧带(ACL)重建的广泛临床应用受到限制,原因在于移植物与软骨下骨的整合不可预测,且缺乏能够促进HT移植物与骨生物固定的装置。HT移植物在骨隧道内的固定部位已被确定为重建ACL的薄弱点,这可能是由于移植物未能重新建立能够将负荷从韧带传递至骨同时将界面应力集中降至最低的生理性腱骨界面。尽管已证实在移植物-骨界面会形成纤维血管组织,但与直接韧带-骨连接处的天然纤维软骨相比,这种纤维血管组织的排列不符合解剖学方向。界面组织工程体现了一种新的移植物固定方法,专注于通过生物固定将肌腱移植物固定至骨,其中在肌腱和韧带与骨的连接处天然存在的复杂功能界面在移植物插入骨隧道的部位得以再生。本研究聚焦于一种新型仿生三相支架系统的体内评估,该系统与在移植物-骨界面发现的相关细胞类型共同培养,具体为成纤维细胞、软骨细胞和成骨细胞。该支架旨在通过引导重新建立符合解剖学方向且具有机械功能的纤维软骨界面区域来促进HT移植物与骨的生物固定。研究发现,接种细胞的三相支架在体内支持细胞相互作用以及组织浸润和大量基质产生。此外,在支架上诱导了可控的相特异性基质异质性,形成了不同的矿物质和类似界面的组织区域。本研究结果证明了在单个移植物上进行多组织再生的可行性,以及界面组织工程实现软组织移植物与骨生物固定的潜力。