Suppr超能文献

一种用于功能磁共振成像的联合统计参数映射-独立成分分析方法。

A combined SPM-ICA approach to fMRI.

作者信息

Penney Todd J M, Koles Zoltan J

机构信息

University of Alberta, Edmonton, Alberta, Canada.

出版信息

Conf Proc IEEE Eng Med Biol Soc. 2006;2006:723-6. doi: 10.1109/IEMBS.2006.260420.

Abstract

Independent component analysis (ICA) and statistical parametric mapping (SPM) are two commonly used methods of analyzing fMRI measurements. Typically, these methods are applied separately to the measurements to produce brain maps indicating active brain regions in response to a stimulus or a performed task. However, ICA can also be used to develop a hemodynamic response model that can be used as a regressor in SPM of fMRI measurements. This may lead to a more accurate method of localizing brain activity that corresponds to performing a task or to various pathologies. In this study, BOLD fMRI data were acquired from a subject performing a finger flexion task in a block design paradigm. Both spatial and temporal ICA was performed on the subject's BOLD fMRI measurements. Two hemodynamic response model signals were generated from ICA results to use as regressors in SPM of the subject data. IC maps and SPM-generated brain maps of the subject data using the canonical hemodynamic response model and the ICA-derived models were compared. In all cases, there was significant overlap in voxel activations.

摘要

独立成分分析(ICA)和统计参数映射(SPM)是两种常用的功能磁共振成像(fMRI)测量分析方法。通常,这些方法分别应用于测量数据,以生成脑图谱,指示响应刺激或执行任务时的活跃脑区。然而,ICA还可用于开发血流动力学响应模型,该模型可用作fMRI测量SPM中的回归变量。这可能会产生一种更准确的方法来定位与执行任务或各种病理状况相对应的脑活动。在本研究中,采用组块设计范式,从一名执行手指屈曲任务的受试者获取血氧水平依赖性功能磁共振成像(BOLD fMRI)数据。对受试者的BOLD fMRI测量数据进行了空间和时间独立成分分析。从ICA结果生成两个血流动力学响应模型信号,用作受试者数据SPM中的回归变量。比较了使用标准血流动力学响应模型和ICA衍生模型的受试者数据的独立成分图谱和SPM生成的脑图谱。在所有情况下,体素激活都有显著重叠。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验