Bathula Deepti R, Tagare Hemant D, Staib Lawrence H, Papademetris Xenophon, Schultz Robert T, Duncan James S
Department of Biomedical Engineering, Yale University, P.O. Box 208042, New Haven, CT 06520, USA.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):246-54. doi: 10.1007/978-3-540-85990-1_30.
Spatial modeling is essential for fMRI analysis due to relatively high noise in the data. Earlier approaches have been primarily concerned with the spatial coherence of the BOLD response in local neighborhoods. In addition to a smoothness constraint, we propose to incorporate prior knowledge of brain activation patterns learned from training samples. This spatially informed prior can significantly enhance the estimation process by inducing sensitivity to task related regions of the brain. As fMRI data exhibits intersubject variability in functional anatomy, we design the prior using Independent Component Analysis (ICA). Due to the non-Gaussian assumption, ICA does not regress to the mean activation pattern and thus avoids suppressing intersubject differences. Results from a real fMRI experiment indicate that our approach provides statistically significant improvement in estimating activation compared to the standard general linear model (GLM) based methods.
由于数据中的噪声相对较高,空间建模对于功能磁共振成像(fMRI)分析至关重要。早期的方法主要关注局部邻域中血氧水平依赖(BOLD)反应的空间连贯性。除了平滑度约束外,我们建议纳入从训练样本中学到的大脑激活模式的先验知识。这种空间信息先验可以通过诱导对大脑任务相关区域的敏感性来显著增强估计过程。由于fMRI数据在功能解剖学上表现出个体间差异,我们使用独立成分分析(ICA)设计先验。由于非高斯假设,ICA不会回归到平均激活模式,从而避免抑制个体间差异。来自真实fMRI实验的结果表明,与基于标准通用线性模型(GLM)的方法相比,我们的方法在估计激活方面提供了具有统计学意义的改进。