Suppr超能文献

基于独立成分分析(ICA)空间先验的功能磁共振成像(fMRI)数据的贝叶斯分析。

Bayesian analysis of fMRI data with ICA based spatial prior.

作者信息

Bathula Deepti R, Tagare Hemant D, Staib Lawrence H, Papademetris Xenophon, Schultz Robert T, Duncan James S

机构信息

Department of Biomedical Engineering, Yale University, P.O. Box 208042, New Haven, CT 06520, USA.

出版信息

Med Image Comput Comput Assist Interv. 2008;11(Pt 2):246-54. doi: 10.1007/978-3-540-85990-1_30.

Abstract

Spatial modeling is essential for fMRI analysis due to relatively high noise in the data. Earlier approaches have been primarily concerned with the spatial coherence of the BOLD response in local neighborhoods. In addition to a smoothness constraint, we propose to incorporate prior knowledge of brain activation patterns learned from training samples. This spatially informed prior can significantly enhance the estimation process by inducing sensitivity to task related regions of the brain. As fMRI data exhibits intersubject variability in functional anatomy, we design the prior using Independent Component Analysis (ICA). Due to the non-Gaussian assumption, ICA does not regress to the mean activation pattern and thus avoids suppressing intersubject differences. Results from a real fMRI experiment indicate that our approach provides statistically significant improvement in estimating activation compared to the standard general linear model (GLM) based methods.

摘要

由于数据中的噪声相对较高,空间建模对于功能磁共振成像(fMRI)分析至关重要。早期的方法主要关注局部邻域中血氧水平依赖(BOLD)反应的空间连贯性。除了平滑度约束外,我们建议纳入从训练样本中学到的大脑激活模式的先验知识。这种空间信息先验可以通过诱导对大脑任务相关区域的敏感性来显著增强估计过程。由于fMRI数据在功能解剖学上表现出个体间差异,我们使用独立成分分析(ICA)设计先验。由于非高斯假设,ICA不会回归到平均激活模式,从而避免抑制个体间差异。来自真实fMRI实验的结果表明,与基于标准通用线性模型(GLM)的方法相比,我们的方法在估计激活方面提供了具有统计学意义的改进。

相似文献

1
Bayesian analysis of fMRI data with ICA based spatial prior.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):246-54. doi: 10.1007/978-3-540-85990-1_30.
2
A combined SPM-ICA approach to fMRI.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:723-6. doi: 10.1109/IEMBS.2006.260420.
3
Bayesian deconvolution of [corrected] fMRI data using bilinear dynamical systems.
Neuroimage. 2008 Oct 1;42(4):1381-96. doi: 10.1016/j.neuroimage.2008.05.052. Epub 2008 Jun 6.
4
Bayesian fMRI data analysis with sparse spatial basis function priors.
Neuroimage. 2007 Feb 1;34(3):1108-25. doi: 10.1016/j.neuroimage.2006.10.005. Epub 2006 Dec 5.
5
Effect of spatial alignment transformations in PCA and ICA of functional neuroimages.
IEEE Trans Med Imaging. 2007 Aug;26(8):1058-68. doi: 10.1109/TMI.2007.896928.
6
Spatially adaptive mixture modeling for analysis of FMRI time series.
IEEE Trans Med Imaging. 2010 Apr;29(4):1059-74. doi: 10.1109/TMI.2010.2042064. Epub 2010 Mar 25.
7
A Bayesian mixture approach to modeling spatial activation patterns in multisite fMRI data.
IEEE Trans Med Imaging. 2010 Jun;29(6):1260-74. doi: 10.1109/TMI.2010.2044045. Epub 2010 Mar 18.
8
Anatomically informed bayesian model selection for fMRI group data analysis.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):450-7. doi: 10.1007/978-3-642-04271-3_55.
9
Probabilistic framework for brain connectivity from functional MR images.
IEEE Trans Med Imaging. 2008 Jun;27(6):825-33. doi: 10.1109/TMI.2008.915672.
10
Analyzing consistency of independent components: an fMRI illustration.
Neuroimage. 2008 Jan 1;39(1):169-80. doi: 10.1016/j.neuroimage.2007.08.027. Epub 2007 Aug 28.

本文引用的文献

1
Functional Brain Image Analysis Using Joint Function-Structure Priors.
Med Image Comput Comput Assist Interv. 2004 Jan 1;3217:736-744. doi: 10.1901/jaba.2004.3217-736.
2
Bayesian fMRI data analysis with sparse spatial basis function priors.
Neuroimage. 2007 Feb 1;34(3):1108-25. doi: 10.1016/j.neuroimage.2006.10.005. Epub 2006 Dec 5.
3
Developmental deficits in social perception in autism: the role of the amygdala and fusiform face area.
Int J Dev Neurosci. 2005 Apr-May;23(2-3):125-41. doi: 10.1016/j.ijdevneu.2004.12.012.
4
Bayesian fMRI time series analysis with spatial priors.
Neuroimage. 2005 Jan 15;24(2):350-62. doi: 10.1016/j.neuroimage.2004.08.034.
5
Fully Bayesian spatio-temporal modeling of FMRI data.
IEEE Trans Med Imaging. 2004 Feb;23(2):213-31. doi: 10.1109/TMI.2003.823065.
6
Bayesian approach to segmentation of statistical parametric maps.
IEEE Trans Biomed Eng. 2001 Oct;48(10):1186-94. doi: 10.1109/10.951522.
7
Spatial mixture modeling of fMRI data.
Hum Brain Mapp. 2000 Dec;11(4):233-48. doi: 10.1002/1097-0193(200012)11:4<233::aid-hbm10>3.0.co;2-f.
8
fMRI signal restoration using a spatio-temporal Markov Random Field preserving transitions.
Neuroimage. 1998 Nov;8(4):340-9. doi: 10.1006/nimg.1998.0372.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验