Suppr超能文献

用于生物分析应用的低荧光光刻胶。

Photoresist with low fluorescence for bioanalytical applications.

作者信息

Pai Jeng-Hao, Wang Yuli, Salazar Gina To'A, Sims Christopher E, Bachman Mark, Li G P, Allbritton Nancy L

机构信息

Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697, USA.

出版信息

Anal Chem. 2007 Nov 15;79(22):8774-80. doi: 10.1021/ac071528q. Epub 2007 Oct 20.

Abstract

The negative photoresist SU-8 has found widespread use as a material in the fabrication of microelectrical-mechanical systems (MEMS). Although SU-8 has been utilized as a structural material for biological MEMS, a number of SU-8 properties limit its application in these bioanalytical devices. These attributes include its brittleness, nonspecific adsorption of biomolecules, and high fluorescence in the visible wavelengths. In addition, native SU-8 is a poor substrate for cellular adhesion. Photoresists composed of resins with epoxide side groups and photoacids were screened for their ability to serve as a low-fluorescence photoresist with sufficient resolution to generate microstructures with dimensions of 5-10 microm. The fluorescence of structures formed from 1002F photoresist (1002F resin combined with triarylsulfonium hexafluoroantimonate salts) was as much as 10 times less fluorescent than similar SU-8 microstructures. The absorbance of 1002F in the visible wavelengths was also substantially lower than that of SU-8. Microstructures or pallets with an aspect ratio as high as 4:1 could be formed permitting 1002F to be used as a structural material in the fabrication of arrays of pallets for sorting adherent cells. Several different cell types were able to adhere to native 1002F surfaces, and the viability of these cells was excellent. As with SU-8, 1002F has a weak adhesion to glass, a favorable attribute when the pallet arrays are used to sort adherent cells. A threshold, laser pulse energy of 3.5 microJ was required to release individual 50 microm, 1002F pallets from an array. Relative to SU-8, 1002F photoresist offers substantial improvements as a substrate in bioanalytical devices and is likely to find widespread use in BioMEMS.

摘要

负性光刻胶SU-8已被广泛用作微机电系统(MEMS)制造中的一种材料。尽管SU-8已被用作生物MEMS的结构材料,但其一些特性限制了它在这些生物分析设备中的应用。这些特性包括其脆性、生物分子的非特异性吸附以及在可见光波长下的高荧光性。此外,天然SU-8是细胞黏附的不良基质。筛选了由带有环氧侧基的树脂和光酸组成的光刻胶,以评估它们作为低荧光光刻胶的能力,该光刻胶要有足够的分辨率来生成尺寸为5-10微米的微结构。由1002F光刻胶(1002F树脂与六氟锑酸三芳基锍盐组合)形成的结构的荧光比类似的SU-8微结构低多达10倍。1002F在可见光波长下的吸光度也大大低于SU-8。可以形成纵横比高达4:1的微结构或托盘,使得1002F可作为制造用于分选贴壁细胞的托盘阵列的结构材料。几种不同的细胞类型能够黏附到天然的1002F表面,并且这些细胞的活力极佳。与SU-8一样,1002F对玻璃的附着力较弱,当使用托盘阵列分选贴壁细胞时,这是一个有利的特性。需要3.5微焦的阈值激光脉冲能量才能从阵列中释放单个50微米的1002F托盘。相对于SU-8,1002F光刻胶作为生物分析设备中的基质有实质性改进,并且可能会在生物MEMS中得到广泛应用。

相似文献

1
Photoresist with low fluorescence for bioanalytical applications.
Anal Chem. 2007 Nov 15;79(22):8774-80. doi: 10.1021/ac071528q. Epub 2007 Oct 20.
2
Transparent magnetic photoresists for bioanalytical applications.
Biomaterials. 2010 Nov;31(33):8810-7. doi: 10.1016/j.biomaterials.2010.07.087. Epub 2010 Aug 16.
3
Characterization of freestanding photoresist films for biological and MEMS applications.
J Micromech Microeng. 2013 Feb 1;23(2). doi: 10.1088/0960-1317/23/2/025009.
5
6
Micropallet arrays for the separation of single, adherent cells.
Anal Chem. 2007 Jan 15;79(2):682-7. doi: 10.1021/ac0615706.
7
In situ roughening of polymeric microstructures.
ACS Appl Mater Interfaces. 2010 Apr;2(4):1086-93. doi: 10.1021/am900860s.
8
Micropallet arrays with poly(ethylene glycol) walls.
Lab Chip. 2008 May;8(5):734-40. doi: 10.1039/b800286j. Epub 2008 Apr 4.
9
Fast-lysis cell traps for chemical cytometry.
Lab Chip. 2008 May;8(5):710-6. doi: 10.1039/b719301g. Epub 2008 Mar 28.
10
Characterization of the laser-based release of micropallets from arrays.
J Biomed Opt. 2008 May-Jun;13(3):034007. doi: 10.1117/1.2937475.

引用本文的文献

1
Development of large-scale gastruloid array to identify aberrant developmental phenotypes.
APL Bioeng. 2025 Jun 10;9(2):026121. doi: 10.1063/5.0269550. eCollection 2025 Jun.
2
Modulation of Nanowire Emitter Arrays Using Micro-LED Technology.
ACS Nano. 2025 Apr 29;19(16):15813-15819. doi: 10.1021/acsnano.5c00474. Epub 2025 Apr 16.
3
Advancements in Micro/Nanorobots in Medicine: Design, Actuation, and Transformative Application.
ACS Omega. 2025 Feb 4;10(6):5214-5250. doi: 10.1021/acsomega.4c09806. eCollection 2025 Feb 18.
4
Fabrication and Applications of Magnetic Polymer Composites for Soft Robotics.
Micromachines (Basel). 2023 Nov 29;14(12):2173. doi: 10.3390/mi14122173.
5
Contractile ring composition dictates kinetics of in silico contractility.
Biophys J. 2023 Sep 19;122(18):3611-3629. doi: 10.1016/j.bpj.2022.12.026. Epub 2022 Dec 20.
7
Efficient transgenesis and homology-directed gene targeting in monolayers of primary human small intestinal and colonic epithelial stem cells.
Stem Cell Reports. 2022 Jun 14;17(6):1493-1506. doi: 10.1016/j.stemcr.2022.04.005. Epub 2022 May 5.
8
Use of liquid lithography to form intestinal crypts with varying microcurvature surrounding the stem cell niche.
J Micromech Microeng. 2021 Dec;31(12). doi: 10.1088/1361-6439/ac2d9c. Epub 2021 Oct 26.
9
10
In vitro generation of self-renewing human intestinal epithelia over planar and shaped collagen hydrogels.
Nat Protoc. 2021 Jan;16(1):352-382. doi: 10.1038/s41596-020-00419-8. Epub 2020 Dec 9.

本文引用的文献

1
Broadening cell selection criteria with micropallet arrays of adherent cells.
Cytometry A. 2007 Oct;71(10):866-74. doi: 10.1002/cyto.a.20424.
2
Collection and expansion of single cells and colonies released from a micropallet array.
Anal Chem. 2007 Mar 15;79(6):2359-66. doi: 10.1021/ac062180m. Epub 2007 Feb 9.
3
Micropallet arrays for the separation of single, adherent cells.
Anal Chem. 2007 Jan 15;79(2):682-7. doi: 10.1021/ac0615706.
4
Micropatterning of living cells on a heterogeneously wetted surface.
Langmuir. 2006 Sep 12;22(19):8257-62. doi: 10.1021/la061602k.
6
Immobilisation of DNA to polymerised SU-8 photoresist.
Biosens Bioelectron. 2006 Jan 15;21(7):1327-32. doi: 10.1016/j.bios.2005.03.004.
8
Biocompatibility and biofouling of MEMS drug delivery devices.
Biomaterials. 2003 May;24(11):1959-67. doi: 10.1016/s0142-9612(02)00565-3.
9
Evaluation of MEMS materials of construction for implantable medical devices.
Biomaterials. 2002 Jul;23(13):2737-50. doi: 10.1016/s0142-9612(02)00007-8.
10
Analysis of single-cell differences by use of an on-chip microculture system and optical trapping.
Fresenius J Anal Chem. 2001 Sep;371(2):276-81. doi: 10.1007/s002160100999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验