Vinay Laurent, Jean-Xavier Céline
Laboratoire Plasticité et Physio-Pathologie de la Motricité (UMR6196), Centre National de la Recherche Scientifique and Aix-Marseille Université, CNRS, 31 chemin Joseph Aiguier, F-13402 Marseille cx 20, France.
Brain Res Rev. 2008 Jan;57(1):103-10. doi: 10.1016/j.brainresrev.2007.09.003. Epub 2007 Sep 20.
Locomotor burst activity in the mature intact spinal cord alternates between the left and right sides of a segment through reciprocal inhibition. By contrast, all motor bursts are in phase in the fetus. The alternating pattern disappears after neonatal spinal cord transection which suppresses supraspinal influences upon the locomotor networks. These data reveal the plasticity of spinal cord locomotor networks. This review describes recent evidence suggesting that regulation of cation-chloride cotransporter expression and activity may underlie this plasticity. GABA and glycine are classically called "inhibitory" amino acids, despite the fact that their action can rapidly switch from inhibition to excitation and vice versa. This post-synaptic action depends on the intracellular concentration of chloride ions (Cl(-)) which is regulated by a protein in the plasma membrane: the K(+)-Cl(-) cotransporter (KCC2) extruding both K(+) and Cl(-) ions. No or a reduced KCC2 expression leads to a depolarizing (excitatory) action of GABA and glycine. This latter situation is observed early during development and in several pathological conditions, such as epilepsy, neuronal injury and chronic pain.
在成熟完整的脊髓中,运动爆发活动通过相互抑制在一个节段的左右两侧交替进行。相比之下,胎儿期所有的运动爆发都是同步的。新生儿脊髓横断后,这种交替模式消失,这抑制了脊髓以上结构对运动网络的影响。这些数据揭示了脊髓运动网络的可塑性。这篇综述描述了最近的证据,表明阳离子 - 氯离子共转运体表达和活性的调节可能是这种可塑性的基础。GABA和甘氨酸传统上被称为“抑制性”氨基酸,尽管它们的作用可以迅速从抑制转变为兴奋,反之亦然。这种突触后作用取决于细胞内氯离子浓度([Cl⁻]i),而氯离子浓度由质膜中的一种蛋白质调节:钾 - 氯共转运体(KCC2)可同时排出钾离子和氯离子。KCC2表达缺失或降低会导致GABA和甘氨酸产生去极化(兴奋性)作用。在发育早期以及几种病理状况下,如癫痫、神经元损伤和慢性疼痛中,会出现后一种情况。