脊髓损伤通过增强兴奋性突触输入和5-羟色胺能调制改变小鼠脊髓Shox2中间神经元,同时维持其内在特性。
Spinal Cord Injury Alters Spinal Shox2 Interneurons by Enhancing Excitatory Synaptic Input and Serotonergic Modulation While Maintaining Intrinsic Properties in Mouse.
作者信息
Garcia-Ramirez D Leonardo, Ha Ngoc T, Bibu Steve, Stachowski Nicholas J, Dougherty Kimberly J
机构信息
Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129.
Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
出版信息
J Neurosci. 2021 Jul 7;41(27):5833-5848. doi: 10.1523/JNEUROSCI.1576-20.2021.
Neural circuitry generating locomotor rhythm and pattern is located in the spinal cord. Most spinal cord injuries (SCIs) occur above the level of spinal locomotor neurons; therefore, these circuits are a target for improving motor function after SCI. Despite being relatively intact below the injury, locomotor circuitry undergoes substantial plasticity with the loss of descending control. Information regarding cell type-specific plasticity within locomotor circuits is limited. Shox2 interneurons (INs) have been linked to locomotor rhythm generation and patterning, making them a potential therapeutic target for the restoration of locomotion after SCI. The goal of the present study was to identify SCI-induced plasticity at the level of Shox2 INs in a complete thoracic transection model in adult male and female mice. Whole-cell patch-clamp recordings of Shox2 INs revealed minimal changes in intrinsic excitability properties after SCI. However, afferent stimulation resulted in mixed excitatory and inhibitory input to Shox2 INs in uninjured mice which became predominantly excitatory after SCI. Shox2 INs were differentially modulated by serotonin (5-HT) in a concentration-dependent manner in uninjured conditions but following SCI, 5-HT predominantly depolarized Shox2 INs. 5-HT receptors mediated excitatory effects on Shox2 INs from both uninjured and SCI mice, but activation of 5-HT receptors enhanced excitability of Shox2 INs only after SCI. Overall, SCI alters sensory afferent input pathways to Shox2 INs and 5-HT modulation of Shox2 INs to enhance excitatory responses. Our findings provide relevant information regarding the locomotor circuitry response to SCI that could benefit strategies to improve locomotion after SCI. Current therapies to gain locomotor control after spinal cord injury (SCI) target spinal locomotor circuitry. Improvements in therapeutic strategies will require a better understanding of the SCI-induced plasticity within specific locomotor elements and their controllers, including sensory afferents and serotonergic modulation. Here, we demonstrate that excitability and intrinsic properties of Shox2 interneurons, which contribute to the generation of the locomotor rhythm and pattering, remain intact after SCI. However, SCI induces plasticity in both sensory afferent pathways and serotonergic modulation, enhancing the activation and excitation of Shox2 interneurons. Our findings will impact future strategies looking to harness these changes with the ultimate goal of restoring functional locomotion after SCI.
产生运动节律和模式的神经回路位于脊髓中。大多数脊髓损伤(SCI)发生在脊髓运动神经元水平之上;因此,这些神经回路是改善脊髓损伤后运动功能的一个靶点。尽管损伤以下的部分相对完整,但运动神经回路会随着下行控制的丧失而发生显著的可塑性变化。关于运动神经回路中细胞类型特异性可塑性的信息有限。Shox2中间神经元(INs)与运动节律的产生和模式形成有关,这使其成为脊髓损伤后恢复运动的潜在治疗靶点。本研究的目的是在成年雄性和雌性小鼠的完全胸段横断模型中,确定脊髓损伤在Shox2中间神经元水平上诱导的可塑性。对Shox2中间神经元进行全细胞膜片钳记录发现,脊髓损伤后其内在兴奋性特性变化极小。然而,在未受伤的小鼠中,传入刺激会给Shox2中间神经元带来混合的兴奋性和抑制性输入,而在脊髓损伤后这种输入主要变为兴奋性的。在未受伤的情况下,Shox2中间神经元受到血清素(5-HT)的浓度依赖性差异调节,但在脊髓损伤后,5-HT主要使Shox2中间神经元去极化。5-HT受体介导了对未受伤和脊髓损伤小鼠的Shox2中间神经元的兴奋作用,但只有在脊髓损伤后,5-HT受体的激活才增强了Shox2中间神经元的兴奋性。总体而言,脊髓损伤改变了传入Shox2中间神经元的感觉输入途径以及对Shox2中间神经元的5-HT调节,以增强兴奋性反应。我们的研究结果提供了有关运动神经回路对脊髓损伤反应的相关信息,这可能有利于改善脊髓损伤后运动的策略。目前脊髓损伤(SCI)后获得运动控制的治疗方法以脊髓运动神经回路为靶点。治疗策略的改进将需要更好地理解脊髓损伤在特定运动元件及其控制者(包括感觉传入和血清素能调节)中诱导的可塑性。在这里,我们证明了对运动节律的产生和模式形成有贡献的Shox2中间神经元的兴奋性和内在特性在脊髓损伤后保持完整。然而,脊髓损伤在感觉传入途径和血清素能调节方面都诱导了可塑性,增强了Shox2中间神经元的激活和兴奋。我们的研究结果将影响未来旨在利用这些变化以最终恢复脊髓损伤后功能性运动为目标的策略。
相似文献
bioRxiv. 2024-6-21
J Neurophysiol. 2010-4-14
Front Neural Circuits. 2023
引用本文的文献
Proc Natl Acad Sci U S A. 2025-4-15
Curr Opin Neurobiol. 2023-10
N Am Spine Soc J. 2023-6-8
本文引用的文献
Front Neural Circuits. 2020
Neuropharmacology. 2020-6-15
Curr Opin Physiol. 2019-4