Suppr超能文献

体层合成数据厚切片:评估不同算法的体模研究。

Thick slices from tomosynthesis data sets: phantom study for the evaluation of different algorithms.

机构信息

Department of Radiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.

出版信息

J Digit Imaging. 2009 Oct;22(5):519-26. doi: 10.1007/s10278-007-9075-y. Epub 2007 Oct 23.

Abstract

Tomosynthesis is a 3-dimensional mammography technique that generates thin slices separated one to the other by typically 1 mm from source data sets. The relatively high image noise in these thin slices raises the value of 1-cm thick slices computed from the set of reconstructed slices for image interpretation. In an initial evaluation, we investigated the potential of different algorithms for generating thick slices from tomosynthesis source data (maximum intensity projection-MIP; average algorithm-AV, and image generation by means of a new algorithm, so-called softMip). The three postprocessing techniques were evaluated using a homogeneous phantom with one textured slab with a total thickness of about 5 cm in which two 0.5-cm-thick slabs contained objects to simulate microcalcifications, spiculated masses, and round masses. The phantom was examined by tomosynthesis (GE Healthcare). Microcalcifications were simulated by inclusion of calcium particles of four different sizes. The slabs containing the inclusions were examined in two different configurations: adjacent to each other and close to the detector and with the two slabs separated by two 1-cm thick breast equivalent material slabs. The reconstructed tomosynthesis slices were postprocessed using MIP, AV, and softMip to generate 1-cm thick slices with a lower noise level. The three postprocessing algorithms were assessed by calculating the resulting contrast versus background for the simulated microcalcifications and contrast-to-noise ratios (CNR) for the other objects. The CNRs of the simulated round and spiculated masses were most favorable for the thick slices generated with the average algorithm, followed by softMip and MIP. Contrast of the simulated microcalcifications was best for MIP, followed by softMip and average projections. Our results suggest that the additional generation of thick slices may improve the visualization of objects in tomosynthesis. This improvement differs from the different algorithms for microcalcifications, speculated objects, and round masses. SoftMip is a new approach combining features of MIP and average showing image properties in between MIP and AV.

摘要

断层合成是一种 3 维乳房 X 线摄影技术,它从源数据集生成薄切片,彼此之间通常相隔 1 毫米。这些薄片中的相对较高的图像噪声会增加从重建切片集合计算得到的 1 厘米厚切片的价值,以便进行图像解释。在最初的评估中,我们研究了从断层合成源数据生成厚切片的不同算法的潜力(最大强度投影-MIP;平均算法-AV 和通过新算法生成的图像,即所谓的 softMip)。使用具有一个纹理板的均匀体模评估这三种后处理技术,该纹理板的总厚度约为 5 厘米,其中两个 0.5 厘米厚的板包含用于模拟微钙化、有角肿块和圆形肿块的物体。使用 GE Healthcare 断层合成仪对体模进行了检查。通过包含四种不同尺寸的钙颗粒来模拟微钙化。包含内含物的板在两种不同的配置下进行了检查:彼此相邻并靠近探测器,以及两个板之间用两块 1 厘米厚的乳房等效材料板隔开。使用 MIP、AV 和 softMip 对重建的断层合成切片进行后处理,以生成具有较低噪声水平的 1 厘米厚切片。通过计算模拟微钙化的对比度与背景的比值以及其他物体的对比噪声比(CNR)来评估这三种后处理算法。模拟的圆形和有角肿块的 CNR 对平均算法生成的厚切片最有利,其次是 softMip 和 MIP。模拟微钙化的对比度对 MIP 最有利,其次是 softMip 和平均投影。我们的结果表明,额外生成的厚切片可能会改善断层合成中物体的可视化效果。这种改善与微钙化、有角物体和圆形肿块的不同算法不同。softMip 是一种新的方法,结合了 MIP 和平均的特征,在 MIP 和 AV 之间显示图像特性。

相似文献

1
Thick slices from tomosynthesis data sets: phantom study for the evaluation of different algorithms.
J Digit Imaging. 2009 Oct;22(5):519-26. doi: 10.1007/s10278-007-9075-y. Epub 2007 Oct 23.
2
softMip: a novel projection algorithm for ultra-low-dose computed tomography.
J Comput Assist Tomogr. 2008 May-Jun;32(3):480-4. doi: 10.1097/RCT.0b013e31812e4b37.
3
Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.
Radiol Med. 2016 Feb;121(2):81-92. doi: 10.1007/s11547-015-0583-4. Epub 2015 Sep 18.
4
9
A comparison of reconstruction algorithms for breast tomosynthesis.
Med Phys. 2004 Sep;31(9):2636-47. doi: 10.1118/1.1786692.

引用本文的文献

2
Elastographic Tomosynthesis From X-Ray Strain Imaging of Breast Cancer.
IEEE J Transl Eng Health Med. 2019 Aug 19;7:4300312. doi: 10.1109/JTEHM.2019.2935721. eCollection 2019.
3
Comparison of contrast-enhanced digital mammography and contrast-enhanced digital breast tomosynthesis for lesion assessment.
J Med Imaging (Bellingham). 2019 Jul;6(3):031407. doi: 10.1117/1.JMI.6.3.031407. Epub 2019 Feb 13.
5
Digital mammography imaging: breast tomosynthesis and advanced applications.
Radiol Clin North Am. 2010 Sep;48(5):917-29. doi: 10.1016/j.rcl.2010.06.009.
7
Breast cancer imaging: a perspective for the next decade.
Med Phys. 2008 Nov;35(11):4878-97. doi: 10.1118/1.2986144.

本文引用的文献

1
A nonrigid registration of MR breast images using complex-valued wavelet transform.
J Digit Imaging. 2008 Mar;21(1):27-36. doi: 10.1007/s10278-007-9021-z.
2
Level set contouring for breast tumor in sonography.
J Digit Imaging. 2007 Sep;20(3):238-47. doi: 10.1007/s10278-006-1041-6.
3
Usefulness of texture analysis for computerized classification of breast lesions on mammograms.
J Digit Imaging. 2007 Sep;20(3):248-55. doi: 10.1007/s10278-006-9945-8.
5
Fractal analysis of contours of breast masses in mammograms.
J Digit Imaging. 2007 Sep;20(3):223-37. doi: 10.1007/s10278-006-0860-9.
6
Impact of breast density on computer-aided detection in full-field digital mammography.
J Digit Imaging. 2006 Sep;19(3):258-63. doi: 10.1007/s10278-006-0592-x.
9
Does ultra-low-dose CT with a radiation dose equivalent to that of KUB suffice to detect renal and ureteral calculi?
J Comput Assist Tomogr. 2006 Jan-Feb;30(1):44-50. doi: 10.1097/01.rct.0000191685.58838.ef.
10
Full-field breast tomosynthesis.
Radiol Manage. 2005 Sep-Oct;27(5):25-31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验