Hyeon Changbong, Onuchic José N
Department of Physics, University of California at San Diego, La Jolla, CA 92093-0374, USA.
Proc Natl Acad Sci U S A. 2007 Oct 30;104(44):17382-7. doi: 10.1073/pnas.0708828104. Epub 2007 Oct 24.
Among the multiple steps constituting the kinesin mechanochemical cycle, one of the most interesting events is observed when kinesins move an 8-nm step from one microtubule (MT)-binding site to another. The stepping motion that occurs within a relatively short time scale ( approximately 100 mus) is, however, beyond the resolution of current experiments. Therefore, a basic understanding to the real-time dynamics within the 8-nm step is still lacking. For instance, the rate of power stroke (or conformational change) that leads to the undocked-to-docked transition of neck-linker is not known, and the existence of a substep during the 8-nm step still remains a controversial issue in the kinesin community. By using explicit structures of the kinesin dimer and the MT consisting of 13 protofilaments, we study the stepping dynamics with varying rates of power stroke (k(p)). We estimate that k(p)(-1) less, similar 20 micros to avoid a substep in an averaged time trace. For a slow power stroke with k(p)(-1) > 20 micros, the averaged time trace shows a substep that implies the existence of a transient intermediate, which is reminiscent of a recent single-molecule experiment at high resolution. We identify the intermediate as a conformation in which the tethered head is trapped in the sideway binding site of the neighboring protofilament. We also find a partial unfolding (cracking) of the binding motifs occurring at the transition state ensemble along the pathways before binding between the kinesin and MT.
在构成驱动蛋白机械化学循环的多个步骤中,当驱动蛋白从一个微管(MT)结合位点移动8纳米步长到另一个位点时,会观察到最有趣的事件之一。然而,在相对较短时间尺度(约100微秒)内发生的步移运动超出了当前实验的分辨率。因此,对8纳米步长内实时动力学的基本理解仍然缺乏。例如,导致颈部连接子从未对接状态转变为对接状态的动力冲程(或构象变化)速率尚不清楚,并且在8纳米步长期间是否存在亚步在驱动蛋白领域仍然是一个有争议的问题。通过使用由13条原纤维组成的驱动蛋白二聚体和微管的明确结构,我们研究了不同动力冲程速率(k(p))下的步移动力学。我们估计k(p)(-1)小于约20微秒,以避免平均时间轨迹中出现亚步。对于k(p)(-1) > 20微秒的缓慢动力冲程,平均时间轨迹显示出一个亚步,这意味着存在一个瞬态中间体,这让人想起最近的一项高分辨率单分子实验。我们将中间体确定为一种构象,其中系留头部被困在相邻原纤维的侧向结合位点。我们还发现在驱动蛋白与微管结合之前沿着途径在过渡态集合处发生的结合基序的部分展开(断裂)。