Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, H3A 0C7, Canada.
Department of Biological Science, Grad. Sch. of Sci, The University of Tokyo, Tokyo, 113-0033, Japan.
Sci Rep. 2023 Jan 26;13(1):1477. doi: 10.1038/s41598-023-28026-z.
Intraflagellar transport for ciliary assembly and maintenance is driven by dynein and kinesins specific to the cilia. It has been shown that anterograde and retrograde transports run on different regions of the doublet microtubule, i.e., separate train tracks. However, little is known about the regulatory mechanism of this selective process. Since the doublet microtubule is known to display specific post-translational modifications of tubulins, i.e., "tubulin code", for molecular motor regulations, we investigated the motility of ciliary specific dynein-2 under different post-translational modification by coarse-grained molecular dynamics. Our setup allows us to simulate the landing behaviors of dynein-2 on un-modified, detyrosinated, poly-glutamylated and poly-glycylated microtubules in silico. Our study revealed that poly-glutamylation can play an inhibitory effect on dynein-2 motility. Our result indicates that poly-glutamylation of the B-tubule of the doublet microtubule can be used as an efficient means to target retrograde intraflagellar transport onto the A-tubule.
纤毛组装和维持的内鞭毛运输由纤毛特异性的动力蛋白和驱动蛋白驱动。已经表明,正向和逆向运输在双联体微管的不同区域运行,即,分开的轨道。然而,对于这种选择性过程的调节机制知之甚少。由于已知双联体微管显示出微管蛋白的特定翻译后修饰,即“微管蛋白密码”,用于分子马达调节,我们通过粗粒度分子动力学研究了纤毛特异性动力蛋白-2在不同翻译后修饰下的运动性。我们的设置允许我们在计算机上模拟纤毛特异性动力蛋白-2在未修饰、去酪氨酸化、多聚谷氨酸化和多聚糖基化微管上的着陆行为。我们的研究表明,多聚谷氨酸化可以对动力蛋白-2的运动性产生抑制作用。我们的结果表明,双联体微管的 B-微管的多聚谷氨酸化可以用作将逆行内鞭毛运输靶向 A-微管的有效手段。