FitzGerald V, Drake K O, Jones J R, Smith M E, Honkimäki V, Buslaps T, Kretzschmer M, Newport R J
School of Physical Sciences, University of Kent at Canterbury, Canterbury CT2 7NH, UK.
J Synchrotron Radiat. 2007 Nov;14(Pt 6):492-9. doi: 10.1107/S0909049507042173. Epub 2007 Oct 13.
The method of in situ time-resolved high-energy X-ray diffraction, using the intrinsically highly collimated X-ray beam generated by the European Synchrotron Radiation Facility, is demonstrated. A specially designed cell, which allows the addition of liquid components, has been used to study the reaction mechanisms of a foamed bioactive calcia-silica sol-gel glass immersed in simulated body fluid. Analysis of the X-ray diffraction data from this experiment provides atomic distances, via the pair correlation functions, at different stages of the dissolution of the glass and of the associated calcium phosphate, and ultimately hydroxyapatite, i.e. bone mineral, formation. Hence, changes in the atomic scale structure can be analysed as a function of reaction time, giving an insight into the evolution of the structure of both the glass matrix and the hydroxyapatite surface growth.
展示了利用欧洲同步辐射装置产生的本质上高度准直的X射线束进行原位时间分辨高能X射线衍射的方法。一个特别设计的允许添加液体成分的样品池已被用于研究浸泡在模拟体液中的泡沫生物活性钙硅溶胶-凝胶玻璃的反应机制。通过对该实验的X射线衍射数据进行分析,借助对关联函数可得出玻璃以及相关磷酸钙最终形成羟基磷灰石(即骨矿物质)溶解不同阶段的原子间距。因此,可以将原子尺度结构的变化作为反应时间的函数进行分析,从而深入了解玻璃基体和羟基磷灰石表面生长结构的演变。