Zhou Weidong, Li Junbo, He Xiaorong, Li Cuihong, Lv Jing, Li Yuliang, Wang Shu, Liu Huibiao, Zhu Daoben
CAS Key Laboratory of Organic Solid, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100080, China.
Chemistry. 2008;14(2):754-63. doi: 10.1002/chem.200701105.
A [2]rotaxane-based molecular shuttle comprised a macrocycle mechanically interlocked to a chemical "dumbbell" has been prepared in high yields by a thermodynamically controlled, template-induced clipping procedure. This molecular shuttle has two different recognition sites, namely, -NH2 +- and amide, separated by a phenyl unit. The macrocycle exhibits high selectivity for the -NH2+- recognition sites in the protonated form through noncovalent interactions, which include 1) N+-H...O hydrogen bonds; 2) C-H...O interactions between the CH2NH2+CH2 protons on the thread and the oligo(ethylene glycol) unit in the macrocycle; 3) pi...pi stacking interaction between macrocycle and aromatic unit. Upon deprotonation of the [2]rotaxane the macrocycle glides to the amide recognition site due to the hydrogen bonds between the -CONH- group and the oligo(ethylene glycol) unit in the macrocycle. The deprotonation process requires about 10 equivalents of base (iPr2NEt) in polar acetone, while the amount of base is only 1.2 equivalents in apolar tetrachloroethane. Upon addition of Li+, the conformation of the [2]rotaxane was altered as a result of the collective interactions of 1) hydrogen bonds between pyridine nitrogen and amide hydrogen atoms; 2) coordination between the oligo(ethylene glycol) unit, amide oxygen atom and Li+ cation. Then, when Zn2+ ions are added, the macrocycle returns to the deprotonated -NH- recognition site owing to coordination of the macrocycle and -NH- from the axle with the Zn2+ ion. All the above-mentioned movement processes are reversible through the alternate addition of TFA/iPr2NEt, Li/[12]-crown-4 and Zn2+/ethylenediaminetetraacetate (EDTA), by virtue of hydrogen bonding and metal-ion complexation. Significantly, the three independent movement processes are all accompanied by fluorescent responses: 1) complete repression in the protonated form; 2) low-level expression in the deprotonated form; 3) medium-level expression following addition of Li+; 4) high-level expression on complexation with Zn2+.
一种基于[2]轮烷的分子穿梭体已通过热力学控制的模板诱导剪裁程序以高产率制备出来,该分子穿梭体由一个与化学“哑铃”机械互锁的大环组成。这种分子穿梭体有两个不同的识别位点,即-NH2+-和酰胺基,由一个苯基单元隔开。大环通过非共价相互作用对质子化形式的-NH2+-识别位点表现出高选择性,这些非共价相互作用包括:1)N+-H...O氢键;2)链上的CH2NH2+CH2质子与大环中的低聚(乙二醇)单元之间的C-H...O相互作用;3)大环与芳香单元之间的π...π堆积相互作用。在[2]轮烷去质子化后,由于大环中-CONH-基团与低聚(乙二醇)单元之间的氢键,大环滑动到酰胺识别位点。去质子化过程在极性丙酮中需要约10当量的碱(二异丙基乙胺),而在非极性四氯乙烷中碱的量仅为1.2当量。加入Li+后,由于以下集体相互作用,[2]轮烷的构象发生改变:1)吡啶氮与酰胺氢原子之间的氢键;2)低聚(乙二醇)单元、酰胺氧原子与Li+阳离子之间的配位。然后,当加入Zn2+离子时,由于大环与轴上的-NH-与Zn2+离子的配位作用,大环回到去质子化的-NH-识别位点。通过交替加入三氟乙酸/二异丙基乙胺、Li/[12]-冠-4和Zn2+/乙二胺四乙酸(EDTA),借助氢键和金属离子络合作用,上述所有运动过程都是可逆的。值得注意的是,这三个独立的运动过程都伴随着荧光响应:1)质子化形式下完全抑制;2)去质子化形式下低水平表达;3)加入Li+后中等水平表达;4)与Zn2+络合时高水平表达。