Suppr超能文献

Comparative analysis of gene expression on mRNA and protein level during development of Streptomyces cultures by using singular value decomposition.

作者信息

Vohradsky Jiri, Branny Pavel, Thompson Charles J

机构信息

Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska, Prague, Czech Republic.

出版信息

Proteomics. 2007 Nov;7(21):3853-66. doi: 10.1002/pmic.200700005.

Abstract

This paper describes a comparative systems level analysis of the developmental proteome and transcriptome in the model antibiotic-producing eubacterium Streptomyces coelicolor, cultured on different media. The analysis formulates expression as the superposition of effects of regulatory networks and biological processes which can be identified using singular value decomposition (SVD) of a data matrix formed by time series measurements of expression of individual genes throughout the cell cycle of the bacterium. SVD produces linearly orthogonal factors, each of which can represent an independent system behavior defined by a linear combination of the genes/proteins highly correlated with the corresponding factor. By using SVD of the developmental time series of gene expression, as measured by both protein and RNA levels, we show that on the highest level of control (representing the basic kinetic behavior of the population), the results are identical, regardless of the type of experiment or cultivation method. The results show that this approach is capable of identifying basic regulatory processes independent of the environment in which the organism lives. It also shows that these processes are manifested equally on protein and RNA levels. Biological interpretation of the correlation of the genes and proteins with significant eigenprofiles (representing the highest level kinetic behavior of protein and/or RNA synthesis) revealed their association with metabolic processes, stress responses, starvation, and secondary metabolite production.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验