Orellana G, Kirsch-De Mesmaeker A, Barton J K, Turro N J
Department of Chemistry, Columbia University, New York, NY 10027.
Photochem Photobiol. 1991 Oct;54(4):499-509. doi: 10.1111/j.1751-1097.1991.tb02049.x.
In the presence of double helical polynucleotides (sodium poly(dA-dT).poly(dA-dT) or calf thymus DNA), the efficiency of oxidative or reductive electron transfer between photoexcited ruthenium(II) chelates Ru(tap)2(hat)2+ or Ru(phen)2+(3) (where tap = 1,4,5,8-tetraazaphenanthrene, hat = 1,4,5,8,9,12-hexaazatriphenylene, and phen = 1,10-phenanthroline) and appropriate cationic quenchers (ethidium, Ru(NH3)3+(6), methyl viologen, or M(phen)3+(3), where M = Co, Rh, Cr) increases 1-2 orders of magnitude compared to the efficiency of the same quenching in microhomogeneous aqueous medium (kq = 0.3-1.8 x 10(9) M-1 s-1). The enhancement is more pronounced when the binding constant of the quencher (10(3) less than Kb less than 10(6) M-1) is large. Similar trends are found when the biopolymers are replaced by sodium poly(styrenesulfonate) (PSS). The accelerated electron transfer process is proposed to be due mainly to the effect of accumulation of the reagents in the electrostatic field of the polymer; if corrections for this effect are introduced (e.g. ratioing [quencher]/[polynucleotide]), the reaction rate becomes essentially independent of the polymer concentration. Based upon a model for electron transfer reaction of the complexes within a small cylindrical interface around the DNA helix, calculations of the bimolecular electron transfer rate constants are computed to be 10(3) times smaller when the reactants are bound to the double-stranded polynucleotides and decreased mobility of the cationic species is apparent. The effect is less pronounced if a simpler polyelectrolyte (PSS) is employed. Emission lifetimes of the Ru(II) polypyridyls bound to the DNA (0.32-2 microseconds, double exponential decays) are discussed as well.
在存在双螺旋多核苷酸(聚(dA-dT)·聚(dA-dT)钠或小牛胸腺DNA)的情况下,光激发的钌(II)螯合物Ru(tap)2(hat)2+或Ru(phen)2+(3)(其中tap = 1,4,5,8-四氮杂菲,hat = 1,4,5,8,9,12-六氮杂三亚苯,phen = 1,10-菲咯啉)与合适的阳离子猝灭剂(乙锭、Ru(NH3)3+(6)、甲基紫精或M(phen)3+(3),其中M = Co、Rh、Cr)之间的氧化或还原电子转移效率,与在微均相水性介质中相同猝灭的效率相比提高了1 - 2个数量级(kq = 0.3 - 1.8×10(9)M-1 s-1)。当猝灭剂的结合常数较大(10(3)<Kb<10(6)M-1)时,这种增强更为明显。当生物聚合物被聚苯乙烯磺酸钠(PSS)取代时,也发现了类似的趋势。加速的电子转移过程被认为主要是由于试剂在聚合物静电场中的积累效应;如果引入对此效应的校正(例如将[猝灭剂]/[多核苷酸]进行比例换算),反应速率基本上变得与聚合物浓度无关。基于围绕DNA螺旋的小圆柱界面内配合物的电子转移反应模型,计算得出当反应物与双链多核苷酸结合且阳离子物种的迁移率明显降低时,双分子电子转移速率常数要小10(3)倍。如果使用更简单的聚电解质(PSS),这种效应就不太明显。还讨论了与DNA结合的钌(II)多吡啶的发射寿命(0.32 - 2微秒,双指数衰减)。