Suppr超能文献

凝集素与超分子复合物之间的多价相互作用:半乳糖凝集素-1与自组装假聚轮烷

Multivalent interactions between lectins and supramolecular complexes: Galectin-1 and self-assembled pseudopolyrotaxanes.

作者信息

Belitsky Jason M, Nelson Alshakim, Hernandez Joseph D, Baum Linda G, Stoddart J Fraser

机构信息

California NanoSystems Institute, Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.

出版信息

Chem Biol. 2007 Oct;14(10):1140-51. doi: 10.1016/j.chembiol.2007.09.007.

Abstract

Supramolecular chemistry has been employed to develop flexible and adaptable multivalent neoglycoconjugates for binding galectin-1 (Gal-1). Gal-1, a dimeric lectin with two galactoside-binding sites, regulates cancer progression and immune responses. Self-assembled pseudopolyrotaxanes consisting of lactoside-displaying cyclodextrin (LCD) "beads" threaded onto polyviologen "strings" display mobile ligands as a result of cyclodextrin rotation about, and limited translation along, the polymer chain. The pseudopolyrotaxanes rapidly and efficiently precipitate Gal-1 and provide valency-corrected enhancements of up to 30-fold compared to native lactose and 20-fold over free LCD in a T-cell agglutination assay. A supramolecular statistical effect was observed, wherein the efficacy of Gal-1 inhibition correlates with the number of ligands connected to each other solely through mechanical and noncovalent interactions. Such flexible and adaptable self-assembled pseudopolyrotaxanes show promise for the study of multivalent interactions and targeting of therapeutically relevant lectins.

摘要

超分子化学已被用于开发用于结合半乳糖凝集素-1(Gal-1)的灵活且适应性强的多价新糖缀合物。Gal-1是一种具有两个半乳糖苷结合位点的二聚体凝集素,可调节癌症进展和免疫反应。由展示乳糖苷的环糊精(LCD)“珠子”穿在聚紫精“线”上组成的自组装假聚轮烷,由于环糊精围绕聚合物链旋转并沿聚合物链进行有限的平移,从而展示出可移动的配体。在T细胞凝集试验中,假聚轮烷能快速有效地沉淀Gal-1,与天然乳糖相比,其价态校正增强倍数高达30倍,比游离LCD高出20倍。观察到一种超分子统计效应,其中Gal-1抑制的功效与仅通过机械和非共价相互作用相互连接的配体数量相关。这种灵活且适应性强的自组装假聚轮烷在多价相互作用研究和治疗相关凝集素的靶向方面显示出前景。

相似文献

2
A self-assembled multivalent pseudopolyrotaxane for binding galectin-1.
J Am Chem Soc. 2004 Sep 29;126(38):11914-22. doi: 10.1021/ja0491073.
3
Monitoring cyclodextrin-polyviologen pseudopolyrotaxanes with the Bradford assay.
Org Biomol Chem. 2006 Jan 21;4(2):250-6. doi: 10.1039/b509576j. Epub 2005 Dec 9.
7
Reversible 2D pseudopolyrotaxanes based on cyclodextrins and cucurbit[6]uril.
J Org Chem. 2007 Jan 5;72(1):280-3. doi: 10.1021/jo0617159.
8
Glycodendrimers and Modified ELISAs: Tools to Elucidate Multivalent Interactions of Galectins 1 and 3.
Molecules. 2015 Apr 20;20(4):7059-96. doi: 10.3390/molecules20047059.
9
Controllable DNA condensation through cucurbit[6]uril in 2D pseudopolyrotaxanes.
Chem Commun (Camb). 2007 Aug 28(32):3374-6. doi: 10.1039/b704279e.

引用本文的文献

1
Cyclodextrin-based rotaxanes as a versatile platform for biological and medicinal applications.
Commun Chem. 2025 May 14;8(1):149. doi: 10.1038/s42004-025-01555-6.
2
Aptamer-Gold(III) Complex Nanoparticles: A New Way to Detect Cu, Zn SOD Glycoprotein.
ACS Omega. 2020 Jun 4;5(23):13851-13859. doi: 10.1021/acsomega.0c01192. eCollection 2020 Jun 16.
5
Engineering galectin-glycan interactions for immunotherapy and immunomodulation.
Exp Biol Med (Maywood). 2016 May;241(10):1074-83. doi: 10.1177/1535370216650055.
6
Glycodendrimers: tools to explore multivalent galectin-1 interactions.
Beilstein J Org Chem. 2015 May 12;11:739-47. doi: 10.3762/bjoc.11.84. eCollection 2015.

本文引用的文献

1
Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors.
Angew Chem Int Ed Engl. 1998 Nov 2;37(20):2754-2794. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3.
2
Molecular mobility of interlocked structures exploiting new functions of advanced biomaterials.
Chemistry. 2006 Sep 6;12(26):6730-7. doi: 10.1002/chem.200600370.
3
Molecular-recognition and binding properties of cyclodextrin-conjugated polyrotaxanes.
Chemphyschem. 2006 Aug 11;7(8):1668-70. doi: 10.1002/cphc.200600147.
4
Inhibition and detection of galectins.
Chembiochem. 2006 May;7(5):721-8. doi: 10.1002/cbic.200600011.
5
Cyclodextrin rotaxanes and polyrotaxanes.
Chem Rev. 2006 Mar;106(3):782-817. doi: 10.1021/cr970027+.
6
Monitoring cyclodextrin-polyviologen pseudopolyrotaxanes with the Bradford assay.
Org Biomol Chem. 2006 Jan 21;4(2):250-6. doi: 10.1039/b509576j. Epub 2005 Dec 9.
7
Representing receptor flexibility in ligand docking through relevant normal modes.
J Am Chem Soc. 2005 Jul 6;127(26):9632-40. doi: 10.1021/ja042260c.
8
New roles for galectins in brain tumors--from prognostic markers to therapeutic targets.
Brain Pathol. 2005 Apr;15(2):124-32. doi: 10.1111/j.1750-3639.2005.tb00507.x.
10
Amplification of acetylcholine-binding catenanes from dynamic combinatorial libraries.
Science. 2005 Apr 29;308(5722):667-9. doi: 10.1126/science.1109999. Epub 2005 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验