Delak Katya, Collino Sebastiano, Evans John Spencer
Laboratory for Chemical Physics, Center for Biomolecular Materials Spectroscopy, New York University, 345 East 24th Street, New York, NY 10010, USA.
Langmuir. 2007 Nov 20;23(24):11951-5. doi: 10.1021/la702113x. Epub 2007 Oct 30.
Nature's use of biomineralization polypeptides to control and modulate the growth of biogenic minerals is an important process that, if properly understood, could have significant implications for designing and creating new inorganic-based materials. Although the sequences for a number of biomineralization proteins exist, very little is known about the participation of specific amino acids in the mineral modulation process. In this letter, we investigate the impact of global Asp --> Asn and Glu --> Gln substitutions on two mollusk shell nacre polypeptides, AP7N and n16N. We find that these global substitutions, which remove all anionic Ca(II) binding sites, abolish the expected in vitro mineralization activities associated with each native polypeptide. In addition, the ability of substituted peptides to form complexes with both Ca(II) and Ca(II) metal ion analogs is also abolished. However, some unexpected effects were noted. First, the Asp --> Asn, Glu --> Gln substituted n16N polypeptide is observed to self-assemble and form biofilms or coatings that appear to mineralize in vitro. Second, both polypeptides are structurally affected by these substitutions, with Asp --> Asn substituted AP7N transforming to an alpha helix and Asp --> Asn, Glu --> Gln substituted n16N transforming to a more unfolded random-coil-like structure. We find that the participation of Asp and Glu residues is crucial to the inherent mineralization activities and conformations of AP7N and n16N polypeptides. Surprisingly, we find that the replacement of anionic residues within biomineralization polypeptides such as n16N still permits mineral modulation, but in a different form that now involves peptide self-association and biofilm formation.
自然界利用生物矿化多肽来控制和调节生物源矿物质的生长是一个重要过程,如果能正确理解,可能对设计和创造新型无机材料具有重大意义。尽管已经存在许多生物矿化蛋白的序列,但对于特定氨基酸在矿物质调节过程中的参与情况却知之甚少。在这封信中,我们研究了全局天冬氨酸(Asp)替换为天冬酰胺(Asn)以及谷氨酸(Glu)替换为谷氨酰胺(Gln)对两种软体动物贝壳珍珠层多肽AP7N和n16N的影响。我们发现,这些全局替换去除了所有阴离子钙(Ca(II))结合位点,消除了与每种天然多肽相关的预期体外矿化活性。此外,被取代肽与Ca(II)和Ca(II)金属离子类似物形成复合物的能力也被消除。然而,也注意到了一些意想不到的效果。首先,观察到天冬氨酸(Asp)替换为天冬酰胺(Asn)、谷氨酸(Glu)替换为谷氨酰胺(Gln)的n16N多肽会自组装并形成似乎在体外矿化的生物膜或涂层。其次,这两种多肽在结构上都受到这些替换的影响,天冬氨酸(Asp)替换为天冬酰胺(Asn)的AP7N转变为α螺旋,天冬氨酸(Asp)替换为天冬酰胺(Asn)、谷氨酸(Glu)替换为谷氨酰胺(Gln)的n16N转变为更伸展的类似无规卷曲的结构。我们发现天冬氨酸(Asp)和谷氨酸(Glu)残基的参与对于AP7N和n16N多肽的固有矿化活性和构象至关重要。令人惊讶的是,我们发现生物矿化多肽(如n16N)中阴离子残基的替换仍然允许矿物质调节,但以一种不同的形式,现在涉及肽的自缔合和生物膜形成。