Suppr超能文献

通过膝关节负荷对小鼠胫骨和股骨中骨形成的频率依赖性增强作用。

Frequency-dependent enhancement of bone formation in murine tibiae and femora with knee loading.

作者信息

Zhang Ping, Tanaka Shigeo M, Sun Qiwei, Turner Charles H, Yokota Hiroki

机构信息

Department of Biomedical Engineering, Indiana University - Purdue University Indianapolis (IUPUI), Fesler Hall 115, 1120 South Drive, Indianapolis, IN 46202, USA.

出版信息

J Bone Miner Metab. 2007;25(6):383-91. doi: 10.1007/s00774-007-0774-8. Epub 2007 Oct 25.

Abstract

Knee loading is a relatively new loading modality in which dynamic loads are laterally applied to the knee to induce bone formation in the tibia and the femur. The specific aim of the current study was to evaluate the effects of loading frequencies (in Hz) on bone formation at the site away from the loading site on the knee. The left knee of C57/BL/6 mice was loaded with 0.5 N force at 5, 10, or 15 Hz for 3 min/day for 3 consecutive days, and bone histomorphometry was conducted at the site 75% away from the loading site along the length of tibiae and femora. The results revealed frequency-dependent induction of bone formation, in which the dependence was different in the tibia and the femur. Compared with the sham-loading control, for instance, the cross-sectional cortical area was elevated maximally at 5 Hz in the tibia, whereas the most significant increase was observed at 15 Hz in the femur. Furthermore, mineralizing surface, mineral apposition rate, and bone formation rate were the highest at 5 Hz in the tibia (2.0-, 1.4-, and 2.7 fold, respectively) and 15 Hz in the femur (1.5-, 1.2-, and 1.8 fold, respectively). We observed that the tibia had a lower bone mineral density with more porous microstructures than the femur. Those differences may contribute to the observed differential dependence on loading frequencies.

摘要

膝关节加载是一种相对较新的加载方式,通过向膝关节侧向施加动态载荷,以诱导胫骨和股骨的骨形成。本研究的具体目的是评估加载频率(赫兹)对膝关节加载部位以外区域骨形成的影响。对C57/BL/6小鼠的左膝分别以5、10或15赫兹的频率施加0.5牛顿的力,每天加载3分钟,连续3天,然后沿着胫骨和股骨长度在距离加载部位75%处进行骨组织形态计量学分析。结果显示骨形成的诱导具有频率依赖性,胫骨和股骨的依赖性有所不同。例如,与假加载对照组相比,胫骨的皮质骨横截面积在5赫兹时最大程度升高,而股骨在15赫兹时观察到最显著的增加。此外,胫骨在5赫兹时矿化表面、矿物质沉积率和骨形成率最高(分别为2.0倍、1.4倍和2.7倍),股骨在15赫兹时最高(分别为1.5倍、1.2倍和1.8倍)。我们观察到胫骨的骨密度低于股骨,且微观结构孔隙更多。这些差异可能导致观察到的对加载频率的不同依赖性。

相似文献

1
Frequency-dependent enhancement of bone formation in murine tibiae and femora with knee loading.
J Bone Miner Metab. 2007;25(6):383-91. doi: 10.1007/s00774-007-0774-8. Epub 2007 Oct 25.
2
Knee loading stimulates cortical bone formation in murine femurs.
BMC Musculoskelet Disord. 2006 Sep 19;7:73. doi: 10.1186/1471-2474-7-73.
3
Diaphyseal bone formation in murine tibiae in response to knee loading.
J Appl Physiol (1985). 2006 May;100(5):1452-9. doi: 10.1152/japplphysiol.00997.2005. Epub 2006 Jan 12.
4
Effects of surgical holes in mouse tibiae on bone formation induced by knee loading.
Bone. 2007 May;40(5):1320-8. doi: 10.1016/j.bone.2007.01.018. Epub 2007 Feb 9.
6
Lengthening of mouse hindlimbs with joint loading.
J Bone Miner Metab. 2010 May;28(3):268-75. doi: 10.1007/s00774-009-0135-x. Epub 2009 Nov 5.
7
Rest insertion combined with high-frequency loading enhances osteogenesis.
J Appl Physiol (1985). 2004 May;96(5):1788-93. doi: 10.1152/japplphysiol.01145.2003. Epub 2004 Jan 5.
8
Strain rate influences periosteal adaptation in mature bone.
Med Eng Phys. 2005 May;27(4):277-84. doi: 10.1016/j.medengphy.2004.04.012.
9
Knee loading accelerates bone healing in mice.
J Bone Miner Res. 2007 Dec;22(12):1979-87. doi: 10.1359/jbmr.070803.

引用本文的文献

1
Toward a clear relationship between mechanical signals and bone adaptation.
Mechanobiol Med. 2025 Feb 1;3(1):100115. doi: 10.1016/j.mbm.2025.100115. eCollection 2025 Mar.
2
Mechano-Regulation of Trabecular Bone Adaptation Is Controlled by the Local Environment and Logarithmically Dependent on Loading Frequency.
Front Bioeng Biotechnol. 2020 Oct 14;8:566346. doi: 10.3389/fbioe.2020.566346. eCollection 2020.
3
Mechanical loading mitigates osteoarthritis symptoms by regulating endoplasmic reticulum stress and autophagy.
FASEB J. 2019 Mar;33(3):4077-4088. doi: 10.1096/fj.201801851R. Epub 2018 Nov 28.
4
Finite-element analysis of the mouse proximal ulna in response to elbow loading.
J Bone Miner Metab. 2019 May;37(3):419-429. doi: 10.1007/s00774-018-0943-y. Epub 2018 Jul 30.
5
Knee loading protects against osteonecrosis of the femoral head by enhancing vessel remodeling and bone healing.
Bone. 2015 Dec;81:620-631. doi: 10.1016/j.bone.2015.09.012. Epub 2015 Sep 28.
6
Dynamic fluid flow induced mechanobiological modulation of in situ osteocyte calcium oscillations.
Arch Biochem Biophys. 2015 Aug 1;579:55-61. doi: 10.1016/j.abb.2015.05.012. Epub 2015 Jun 1.
8
Knee loading reduces MMP13 activity in the mouse cartilage.
BMC Musculoskelet Disord. 2013 Nov 1;14:312. doi: 10.1186/1471-2474-14-312.
9
Dynamic hydraulic fluid stimulation regulated intramedullary pressure.
Bone. 2013 Nov;57(1):137-41. doi: 10.1016/j.bone.2013.07.030. Epub 2013 Jul 27.
10
Resonance in the mouse tibia as a predictor of frequencies and locations of loading-induced bone formation.
Biomech Model Mechanobiol. 2014 Jan;13(1):141-51. doi: 10.1007/s10237-013-0491-2. Epub 2013 Apr 11.

本文引用的文献

1
Knee loading dynamically alters intramedullary pressure in mouse femora.
Bone. 2007 Feb;40(2):538-43. doi: 10.1016/j.bone.2006.09.018. Epub 2006 Oct 27.
2
Knee-loading modality drives molecular transport in mouse femur.
Ann Biomed Eng. 2006 Oct;34(10):1600-6. doi: 10.1007/s10439-006-9171-z. Epub 2006 Sep 20.
3
Breaking the rules for bone adaptation to mechanical loading.
J Appl Physiol (1985). 2006 May;100(5):1441-2. doi: 10.1152/japplphysiol.00038.2006.
4
Diaphyseal bone formation in murine tibiae in response to knee loading.
J Appl Physiol (1985). 2006 May;100(5):1452-9. doi: 10.1152/japplphysiol.00997.2005. Epub 2006 Jan 12.
6
Mechanisms by which exercise improves bone strength.
J Bone Miner Metab. 2005;23 Suppl:16-22. doi: 10.1007/BF03026318.
7
Osteogenic potentials with joint-loading modality.
J Bone Miner Metab. 2005;23(4):302-8. doi: 10.1007/s00774-005-0603-x.
8
Strain rate influences periosteal adaptation in mature bone.
Med Eng Phys. 2005 May;27(4):277-84. doi: 10.1016/j.medengphy.2004.04.012.
9
Mechanotransduction in bone does not require a functional cyclooxygenase-2 (COX-2) gene.
J Bone Miner Res. 2005 Mar;20(3):438-46. doi: 10.1359/JBMR.041124. Epub 2004 Nov 29.
10
Osteocyte density in woven bone.
Bone. 2004 Nov;35(5):1095-9. doi: 10.1016/j.bone.2004.07.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验