Scheuren Ariane C, Vallaster Paul, Kuhn Gisela A, Paul Graeme R, Malhotra Angad, Kameo Yoshitaka, Müller Ralph
Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
Front Bioeng Biotechnol. 2020 Oct 14;8:566346. doi: 10.3389/fbioe.2020.566346. eCollection 2020.
It is well-established that cyclic, but not static, mechanical loading has anabolic effects on bone. However, the function describing the relationship between the loading frequency and the amount of bone adaptation remains unclear. Using a combined experimental and computational approach, this study aimed to investigate whether trabecular bone mechano-regulation is controlled by mechanical signals in the local environment and dependent on loading frequency. Specifically, by combining micro-computed tomography (micro-CT) imaging with micro-finite element (micro-FE) analysis, we monitored the changes in microstructural as well as the mechanical environment [strain energy density (SED) and SED gradient] of mouse caudal vertebrae over 4 weeks of either cyclic loading at varying frequencies of 2, 5, or 10 Hz, respectively, or static loading. Higher values of SED and SED gradient on the local tissue level led to an increased probability of trabecular bone formation and a decreased probability of trabecular bone resorption. In all loading groups, the SED gradient was superior in the determination of local bone formation and resorption events as compared to SED. Cyclic loading induced positive net (re)modeling rates when compared to sham and static loading, mainly due to an increase in mineralizing surface and a decrease in eroded surface. Consequently, bone volume fraction increased over time in 2, 5, and 10 Hz (+15%, +21% and +24%, ≤ 0.0001), while static loading led to a decrease in bone volume fraction (-9%, ≤ 0.001). Furthermore, regression analysis revealed a logarithmic relationship between loading frequency and the net change in bone volume fraction over the 4 week observation period ( = 0.74). In conclusion, these results suggest that trabecular bone adaptation is regulated by mechanical signals in the local environment and furthermore, that mechano-regulation is logarithmically dependent on loading frequency with frequencies below a certain threshold having catabolic effects, and those above anabolic effects. This study thereby provides valuable insights toward a better understanding of the mechanical signals influencing trabecular bone formation and resorption in the local environment.
众所周知,周期性机械负荷而非静态机械负荷对骨骼具有合成代谢作用。然而,描述负荷频率与骨骼适应性变化量之间关系的函数仍不明确。本研究采用实验与计算相结合的方法,旨在探究小梁骨的力学调节是否受局部环境中的力学信号控制,并是否依赖于负荷频率。具体而言,通过将微型计算机断层扫描(micro-CT)成像与微观有限元(micro-FE)分析相结合,我们监测了小鼠尾椎在分别以2、5或10Hz不同频率进行周期性负荷或静态负荷4周过程中的微观结构以及力学环境[应变能密度(SED)和SED梯度]的变化。局部组织水平上较高的SED和SED梯度值导致小梁骨形成的概率增加,小梁骨吸收的概率降低。在所有负荷组中,与SED相比,SED梯度在确定局部骨形成和吸收事件方面更具优势。与假手术组和静态负荷相比,周期性负荷诱导了正向的净(再)建模率,这主要是由于矿化表面增加和侵蚀表面减少。因此,在2、5和10Hz组中,骨体积分数随时间增加(分别增加15%、21%和24%,P≤0.0001),而静态负荷导致骨体积分数降低(-9%,P≤0.001)。此外,回归分析揭示了在4周观察期内负荷频率与骨体积分数净变化之间的对数关系(R = 0.74)。总之,这些结果表明小梁骨适应性受局部环境中的力学信号调节,此外,力学调节对数依赖于负荷频率,低于一定阈值的频率具有分解代谢作用,高于该阈值的频率具有合成代谢作用。本研究从而为更好地理解影响局部环境中小梁骨形成和吸收的力学信号提供了有价值的见解。