Suppr超能文献

一种用于原位评估纳米颗粒载体渗透和运输的可灌注3D细胞-基质组织培养室。

A perfusable 3D cell-matrix tissue culture chamber for in situ evaluation of nanoparticle vehicle penetration and transport.

作者信息

Ng Chee Ping, Pun Suzie Hwang

机构信息

Department of Bioengineering, University of Washington, Seattle, Washington, USA.

出版信息

Biotechnol Bioeng. 2008 Apr 15;99(6):1490-501. doi: 10.1002/bit.21698.

Abstract

A key factor in gene or drug therapy is the development of carriers that can efficiently reach targeted cells from a distal administration. In many gene/drug delivery studies, results obtained in 2D cultures fail to translate to similar results in vivo. In this work, we developed a perfusable 3D chamber for studying nanoparticle penetration and transport in cell-gel soft tissue cultures. The compartmented chamber is made of a polydimethylsiloxane (PDMS) top layer with the chamber features, created using micromachined lithography, bonded to a bottom glass coverslip. A solution of cells embedded in a hydrogel is loaded in the chamber between PDMS posts that serve as anchors to the cell-matrix at the gel-media interface. The chamber offers the following unique features: (i) rapid fabrication and simplicity in assembly, (ii) direct in situ cell imaging in a plane normal to the direction of flow or action, (iii) an easily configurable and controllable environment conducive cell culture under static or interstitial flow conditions, and (iv) facile recovery of live cells from chambers for post-experimental analysis. To assess the chamber, we delivered fluorescently labeled nanoparticles of three distinct sizes to cells-embedded Matrigels in the 3D chamber under flow and static conditions. Penetration of nanoparticles were enhanced under interstitial flow while live cell imaging and flow cytometry of recovered cells revealed particle size restrictions to efficient delivery. Although designed for delivery studies, the chamber is versatile and can be easily modified. Thus it may have broad applications for biological, tissue engineering, and therapeutic studies.

摘要

基因或药物治疗中的一个关键因素是开发能够从远端给药有效抵达靶细胞的载体。在许多基因/药物递送研究中,二维培养所获得的结果无法转化为体内的类似结果。在这项工作中,我们开发了一种可灌注的三维腔室,用于研究纳米颗粒在细胞-凝胶软组织培养物中的渗透和运输。该分隔腔室由带有腔室特征的聚二甲基硅氧烷(PDMS)顶层制成,这些特征通过微机械光刻技术创建,然后与底部玻璃盖玻片结合。将嵌入水凝胶中的细胞溶液加载到PDMS柱之间的腔室中,这些柱子在凝胶-介质界面处作为细胞-基质的锚定物。该腔室具有以下独特特性:(i)快速制造且组装简单,(ii)可在垂直于流动或作用方向的平面上进行直接原位细胞成像,(iii)在静态或间质流动条件下易于配置和可控的环境有利于细胞培养,以及(iv)便于从腔室中回收活细胞用于实验后分析。为了评估该腔室,我们在流动和静态条件下,将三种不同尺寸的荧光标记纳米颗粒递送至三维腔室中嵌入基质胶的细胞。在间质流动条件下纳米颗粒的渗透增强,而回收细胞的活细胞成像和流式细胞术显示了有效递送的粒径限制。尽管该腔室是为递送研究而设计的,但它具有通用性且易于修改。因此,它可能在生物学、组织工程和治疗研究中有广泛的应用。

相似文献

3
Micro/Nanofluidic device for single-cell-based assay.
Biomed Microdevices. 2005 Mar;7(1):35-40. doi: 10.1007/s10544-005-6169-5.
4
Microfluidics for flow cytometric analysis of cells and particles.
Physiol Meas. 2005 Jun;26(3):R73-98. doi: 10.1088/0967-3334/26/3/R02. Epub 2005 Feb 1.
5
A parallel-plate flow chamber to study initial cell adhesion on a nanofeatured surface.
IEEE Trans Nanobioscience. 2004 Jun;3(2):90-5. doi: 10.1109/tnb.2004.828268.
6
Microchambers for inverted microscopes.
Biotech Histochem. 2007 Aug;82(4-5):263-6. doi: 10.1080/10520290701751106.
7
NanoLiterBioReactor: long-term mammalian cell culture at nanofabricated scale.
Biomed Microdevices. 2004 Dec;6(4):325-39. doi: 10.1023/B:BMMD.0000048564.37800.d6.
8
MEMS-based fabrication and microfluidic analysis of three-dimensional perfusion systems.
Biomed Microdevices. 2008 Jun;10(3):437-46. doi: 10.1007/s10544-007-9153-4.
9
Microfluidic relief for transport limitations.
Biotechniques. 2005 Aug;39(2):159, 161, 163. doi: 10.2144/05392TE01.
10
Hydrostatic pressure/perfusion culture system designed and validated for engineering tissue.
J Biosci Bioeng. 2005 Jul;100(1):105-11. doi: 10.1263/jbb.100.105.

引用本文的文献

1
Chirality-enhanced transport and drug delivery of graphene nanocarriers to tumor-like cellular spheroid.
Front Chem. 2023 Aug 2;11:1207579. doi: 10.3389/fchem.2023.1207579. eCollection 2023.
2
In Vitro Models of Biological Barriers for Nanomedical Research.
Int J Mol Sci. 2022 Aug 10;23(16):8910. doi: 10.3390/ijms23168910.
3
Innovations in lymph node targeting nanocarriers.
Semin Immunol. 2021 Aug;56:101534. doi: 10.1016/j.smim.2021.101534. Epub 2021 Nov 24.
4
Improving therapeutic potential of non-viral minimized DNA vectors.
Cell Gene Ther Insights. 2020 Nov;6(10):1489-1505. doi: 10.18609/cgti.2020.163. Epub 2020 Nov 19.
5
Real-Time Ratiometric Imaging of Micelles Assembly State in a Microfluidic Cancer-on-a-Chip.
ACS Appl Bio Mater. 2021 Jan 18;4(1):669-681. doi: 10.1021/acsabm.0c01209. Epub 2020 Dec 23.
6
Biocompatibility of Biomaterials for Nanoencapsulation: Current Approaches.
Nanomaterials (Basel). 2020 Aug 22;10(9):1649. doi: 10.3390/nano10091649.
8
Polymeric vehicles for nucleic acid delivery.
Adv Drug Deliv Rev. 2020;156:119-132. doi: 10.1016/j.addr.2020.06.014. Epub 2020 Jun 23.
9
Application of 3-D Microfluidic Models for Studying Mass Transport Properties of the Tumor Interstitial Matrix.
Front Bioeng Biotechnol. 2019 Jan 23;7:6. doi: 10.3389/fbioe.2019.00006. eCollection 2019.

本文引用的文献

3
Interstitial hydrostatic pressure: a manual for students.
Adv Physiol Educ. 2007 Mar;31(1):116-7. doi: 10.1152/advan.00084.2006.
4
A driving force for change: interstitial flow as a morphoregulator.
Trends Cell Biol. 2007 Jan;17(1):44-50. doi: 10.1016/j.tcb.2006.11.007. Epub 2006 Dec 1.
5
Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis.
Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):10889-94. doi: 10.1073/pnas.0604460103. Epub 2006 Jul 10.
6
7
Capturing complex 3D tissue physiology in vitro.
Nat Rev Mol Cell Biol. 2006 Mar;7(3):211-24. doi: 10.1038/nrm1858.
8
A concept for miniaturized 3-D cell culture using an extracellular matrix gel.
Electrophoresis. 2005 Dec;26(24):4751-8. doi: 10.1002/elps.200500478.
9
Mechanobiology in the third dimension.
Ann Biomed Eng. 2005 Nov;33(11):1469-90. doi: 10.1007/s10439-005-8159-4.
10
Tissue cells feel and respond to the stiffness of their substrate.
Science. 2005 Nov 18;310(5751):1139-43. doi: 10.1126/science.1116995.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验