Suppr超能文献

一种针对聚类数据的符号秩检验。

A signed-rank test for clustered data.

作者信息

Datta Somnath, Satten Glen A

机构信息

Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky 40202, USA.

出版信息

Biometrics. 2008 Jun;64(2):501-7. doi: 10.1111/j.1541-0420.2007.00923.x. Epub 2007 Oct 26.

Abstract

We consider the problem of comparing two outcome measures when the pairs are clustered. Using the general principle of within-cluster resampling, we obtain a novel signed-rank test for clustered paired data. We show by a simple informative cluster size simulation model that only our test maintains the correct size under a null hypothesis of marginal symmetry compared to four other existing signed rank tests; further, our test has adequate power when cluster size is noninformative. In general, cluster size is informative if the distribution of pair-wise differences within a cluster depends on the cluster size. An application of our method to testing radiation toxicity trend is presented.

摘要

我们考虑在配对数据聚类的情况下比较两个结果指标的问题。利用聚类内重抽样的一般原理,我们得到了一种用于聚类配对数据的新型符号秩检验。通过一个简单的信息性聚类大小模拟模型,我们表明与其他四个现有的符号秩检验相比,只有我们的检验在边际对称性的原假设下保持正确的检验规模;此外,当聚类大小无信息时,我们的检验具有足够的功效。一般来说,如果聚类内成对差异的分布取决于聚类大小,那么聚类大小就是信息性的。我们还展示了我们的方法在测试辐射毒性趋势方面的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验