Suppr超能文献

聚类匹配对数据的分析。

Analysis of clustered matched-pair data.

作者信息

Durkalski Valerie L, Palesch Yuko Y, Lipsitz Stuart R, Rust Philip F

机构信息

The Clinical Innovation Group (TCIG), Medical University of South Carolina, Foundation for Research Development, Charleston, SC 29401, USA.

出版信息

Stat Med. 2003 Aug 15;22(15):2417-28. doi: 10.1002/sim.1438.

Abstract

Evaluation of the performance of a new diagnostic procedure with respect to a standard procedure arises frequently in practice. The response of interest, often in a dichotomous form, is measured twice, once with each procedure. The two procedures are administered to either two matched individuals, or when practical, to the same individual. A large sample test for matched-pair data is the McNemar test. The main assumption of this test is independent paired responses; however, when more than one outcome from an individual is measured by each procedure, the data are clustered. Examples of such cases can be seen in dental and ophthalmology studies. Variance adjustment methods for the analysis of clustered matched-pair data have been proposed; however, because of unequal cluster sizes, variability of correlation structures within a cluster (within paired responses in a cluster as well as between paired responses in a cluster), and unequal success probabilities among the clusters, the performances of some available methods are not consistent. This research proposes a simple adjustment to the McNemar test for the analysis of clustered matched-pair data. Method of moments is used to calculate a consistent variance estimator. Using Monte Carlo simulation, the size and power of the proposed test are compared to those of two currently available methods. To illustrate practical application, clustered matched-pair data from two clinical studies are analysed.

摘要

在实践中,经常会出现对一种新诊断程序相对于标准程序的性能进行评估的情况。通常以二分形式呈现的感兴趣的反应会被测量两次,每种程序各测量一次。这两种程序会施用于两个匹配的个体,或者在可行的情况下,施用于同一个个体。用于配对数据的大样本检验是 McNemar 检验。该检验的主要假设是独立的配对反应;然而,当每种程序测量个体的多个结果时,数据是聚类的。在牙科和眼科研究中可以看到此类情况的例子。已经提出了用于分析聚类配对数据的方差调整方法;然而,由于聚类大小不等、聚类内相关结构的变异性(聚类内配对反应之间以及聚类内配对反应与聚类间配对反应之间)以及聚类间成功概率不等,一些现有方法的性能并不一致。本研究提出了一种对 McNemar 检验的简单调整,用于分析聚类配对数据。使用矩估计法来计算一致的方差估计量。通过蒙特卡罗模拟,将所提出检验的大小和功效与两种当前可用方法的大小和功效进行比较。为说明实际应用,对来自两项临床研究的聚类配对数据进行了分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验