Ghosh Partha S, Han Gang, Erdogan Belma, Rosado Olga, Rotello Vincent M
Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA.
J Pept Sci. 2008 Feb;14(2):134-8. doi: 10.1002/psc.947.
Nanoparticles provide large surface areas and controlled surface functionality and structure, making them excellent scaffolds for peptide recognition. A family of nanoparticles has been fabricated by amino acid functionalization to afford tailored surfaces. These particles are complementary to a tetraaspartate peptide (TAP) featuring cofacial anionic functionality when in the alpha-helical conformation. The functional groups present on these nanoparticle surfaces provide a tool to investigate the contribution of various noncovalent interactions at the nanoparticle-peptide interface. The ability of these particles to enforce the folding of the peptide into an alpha-helix was explored, demonstrating high helicity induction with particles featuring dicationic amino acids such as lysine or histidine, and little or no helix stabilization with hydrophobic amino acid termini.
纳米颗粒具有大的表面积以及可控的表面功能和结构,使其成为用于肽识别的优异支架。通过氨基酸功能化制备了一系列纳米颗粒,以提供定制的表面。当处于α-螺旋构象时,这些颗粒与具有共面阴离子功能的四聚天冬氨酸肽(TAP)互补。这些纳米颗粒表面上存在的官能团提供了一种工具,用于研究纳米颗粒-肽界面处各种非共价相互作用的贡献。研究了这些颗粒促使肽折叠成α-螺旋的能力,结果表明,具有赖氨酸或组氨酸等双阳离子氨基酸的颗粒具有高螺旋诱导性,而具有疏水氨基酸末端的颗粒几乎没有或没有螺旋稳定性。