Tringham Elizabeth W, Dupere Jonathan R B, Payne C Elizabeth, Usowicz Maria M
Department of Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK.
J Pharmacol Exp Ther. 2008 Feb;324(2):806-14. doi: 10.1124/jpet.107.130641. Epub 2007 Nov 1.
The identification of currents carried by N- and P-type Ca(2+) channels in the nervous system relies on the use of omega-conotoxin (CTx) GVIA and omega-agatoxin (Aga) IVA. The peptide omega-Aga-IVA inhibits P-type currents at nanomolar concentrations and N-type currents at micromolar concentrations. omega-CTx-GVIA blocks N-type currents, but there have been no reports that it can also inhibit P-type currents. To assess the effects of omega-CTx-GVIA on P-type channels, we made patch-clamp recordings from the soma of Purkinje cells in cerebellar slices of mature [postnatal days (P) 40-50, P40-50] and immature (P13-20) rats, in which P-type channels carry most of the Ca(2+) channel current (>/=85%). These showed that micromolar concentrations of omega-CTx-GVIA inhibited the current in P40-50 cells (66%, 3 microM; 78%, 10 microM) and in P13-20 Purkinje cells (86%, 3 muM; 89%, 10 microM). The inhibition appeared to be reversible, in contrast to the known irreversible inhibition of N-type current. Exposure of slices from young animals to the enzyme commonly used to dissociate Purkinje cells, protease XXIII, abolished the inhibition by omega-CTx-GVIA but not by omega-Aga-IVA (84%, 30 nM). Our finding that micromolar concentrations of omega-CTx-GVIA inhibit P-type currents suggests that specific block of N-type current requires the use of submicromolar concentrations. The protease-induced removal of block by omega-CTx-GVIA but not by omega-Aga-IVA indicates a selective proteolytic action at site(s) on P-type channels with which omega-CTx-GVIA interacts. It also suggests that Ca(2+) channel pharmacology in neurons dissociated using protease may not predict that in neurons not exposed to the enzyme.
神经系统中N型和P型Ca(2+)通道所携带电流的鉴定依赖于使用ω-芋螺毒素(CTx)GVIA和ω-阿加毒素(Aga)IVA。肽ω-Aga-IVA在纳摩尔浓度下抑制P型电流,在微摩尔浓度下抑制N型电流。ω-CTx-GVIA阻断N型电流,但尚无报告表明它也能抑制P型电流。为了评估ω-CTx-GVIA对P型通道的影响,我们在成熟[出生后天数(P)40 - 50,P40 - 50]和未成熟(P13 - 20)大鼠的小脑切片中对浦肯野细胞的胞体进行膜片钳记录,其中P型通道携带大部分Ca(2+)通道电流(≥85%)。这些结果表明,微摩尔浓度的ω-CTx-GVIA抑制P40 - 50细胞中的电流(3微摩尔时为66%,10微摩尔时为78%)以及P13 - 20浦肯野细胞中的电流(3微摩尔时为86%,10微摩尔时为89%)。与已知的对N型电流的不可逆抑制相反,这种抑制似乎是可逆的。将幼小动物的切片暴露于常用于解离浦肯野细胞的酶蛋白酶XXIII后,消除了ω-CTx-GVIA的抑制作用,但ω-Aga-IVA的抑制作用未被消除(30纳摩尔时为84%)。我们发现微摩尔浓度的ω-CTx-GVIA抑制P型电流,这表明特异性阻断N型电流需要使用亚微摩尔浓度。蛋白酶诱导消除ω-CTx-GVIA而非ω-Aga-IVA的阻断作用,表明在P型通道上与ω-CTx-GVIA相互作用的位点存在选择性蛋白水解作用。这也表明,使用蛋白酶解离的神经元中的Ca(2+)通道药理学可能无法预测未暴露于该酶的神经元中的情况。