González-Rodríguez Pedro, Kim Arnold D, Moscoso Miguel
School of Natural Sciences, PO Box 2039, University of California, Merced, Merced, California 95344, USA.
J Opt Soc Am A Opt Image Sci Vis. 2007 Nov;24(11):3456-66. doi: 10.1364/josaa.24.003456.
We solve direct and inverse obstacle-scattering problems in a half-space composed of a uniform absorbing and scattering medium. Scattering is sharply forward-peaked, so we use the modified Fokker-Planck approximation to the radiative transport equation. The obstacle is an absorbing inhomogeneity that is thin with respect to depth. Using the first Born approximation, we derive a method to recover the depth and shape of the absorbing obstacle. This method requires only plane-wave illumination at two incidence angles and a detector with a fixed numerical aperture. First we recover the depth of the obstacle through solution of a simple nonlinear least-squares problem. Using that depth, we compute a point-spread function explicitly. We use that point-spread function in a standard deconvolution algorithm to reconstruct the shape of the obstacle. Numerical results show the utility of this method even in the presence of measurement noise.
我们解决了在由均匀吸收和散射介质组成的半空间中的直接和逆障碍物散射问题。散射具有强烈的前向峰值,因此我们对辐射传输方程使用修正的福克 - 普朗克近似。障碍物是相对于深度较薄的吸收性不均匀体。使用一阶玻恩近似,我们推导了一种恢复吸收性障碍物深度和形状的方法。该方法仅需要两个入射角的平面波照明和具有固定数值孔径的探测器。首先,我们通过求解一个简单的非线性最小二乘问题来恢复障碍物的深度。利用该深度,我们明确计算点扩散函数。我们在标准去卷积算法中使用该点扩散函数来重建障碍物的形状。数值结果表明,即使存在测量噪声,该方法也很有用。