University of California, San Diego, Department of Neurosciences, La Jolla, California 92093, USA.
J Biomed Opt. 2011 Jan-Feb;16(1):016006. doi: 10.1117/1.3533263.
Absorption or fluorescence-based two-dimensional (2-D) optical imaging is widely employed in functional brain imaging. The image is a weighted sum of the real signal from the tissue at different depths. This weighting function is defined as "depth sensitivity." Characterizing depth sensitivity and spatial resolution is important to better interpret the functional imaging data. However, due to light scattering and absorption in biological tissues, our knowledge of these is incomplete. We use Monte Carlo simulations to carry out a systematic study of spatial resolution and depth sensitivity for 2-D optical imaging methods with configurations typically encountered in functional brain imaging. We found the following: (i) the spatial resolution is <200 μm for NA≤0.2 or focal plane depth≤300 μm. (ii) More than 97% of the signal comes from the top 500 μm of the tissue. (iii) For activated columns with lateral size larger than spatial resolution, changing numerical aperature (NA) and focal plane depth does not affect depth sensitivity. (iv) For either smaller columns or large columns covered by surface vessels, increasing NA and/or focal plane depth may improve depth sensitivity at deeper layers. Our results provide valuable guidance for the optimization of optical imaging systems and data interpretation.
基于吸收或荧光的二维(2-D)光学成像是广泛应用于功能脑成像的一种方法。图像是来自不同深度组织的真实信号的加权和。这个加权函数被定义为“深度灵敏度”。描述深度灵敏度和空间分辨率对于更好地解释功能成像数据非常重要。然而,由于生物组织中的光散射和吸收,我们对此的了解并不完整。我们使用蒙特卡罗模拟对功能脑成像中常见的二维光学成像方法的空间分辨率和深度灵敏度进行了系统研究。我们发现:(i)对于数值孔径(NA)≤0.2 或焦平面深度≤300μm 的情况,空间分辨率<200μm。(ii)超过 97%的信号来自组织的前 500μm。(iii)对于侧向尺寸大于空间分辨率的激活柱,改变数值孔径(NA)和焦平面深度不会影响深度灵敏度。(iv)对于较小的柱或被表面血管覆盖的较大柱,增加 NA 和/或焦平面深度可能会改善更深层的深度灵敏度。我们的结果为光学成像系统的优化和数据解释提供了有价值的指导。