Suppr超能文献

脑的二维光学成像的空间分辨率和深度灵敏度的蒙特卡罗模拟。

Monte Carlo simulation of the spatial resolution and depth sensitivity of two-dimensional optical imaging of the brain.

机构信息

University of California, San Diego, Department of Neurosciences, La Jolla, California 92093, USA.

出版信息

J Biomed Opt. 2011 Jan-Feb;16(1):016006. doi: 10.1117/1.3533263.

Abstract

Absorption or fluorescence-based two-dimensional (2-D) optical imaging is widely employed in functional brain imaging. The image is a weighted sum of the real signal from the tissue at different depths. This weighting function is defined as "depth sensitivity." Characterizing depth sensitivity and spatial resolution is important to better interpret the functional imaging data. However, due to light scattering and absorption in biological tissues, our knowledge of these is incomplete. We use Monte Carlo simulations to carry out a systematic study of spatial resolution and depth sensitivity for 2-D optical imaging methods with configurations typically encountered in functional brain imaging. We found the following: (i) the spatial resolution is <200 μm for NA≤0.2 or focal plane depth≤300 μm. (ii) More than 97% of the signal comes from the top 500 μm of the tissue. (iii) For activated columns with lateral size larger than spatial resolution, changing numerical aperature (NA) and focal plane depth does not affect depth sensitivity. (iv) For either smaller columns or large columns covered by surface vessels, increasing NA and/or focal plane depth may improve depth sensitivity at deeper layers. Our results provide valuable guidance for the optimization of optical imaging systems and data interpretation.

摘要

基于吸收或荧光的二维(2-D)光学成像是广泛应用于功能脑成像的一种方法。图像是来自不同深度组织的真实信号的加权和。这个加权函数被定义为“深度灵敏度”。描述深度灵敏度和空间分辨率对于更好地解释功能成像数据非常重要。然而,由于生物组织中的光散射和吸收,我们对此的了解并不完整。我们使用蒙特卡罗模拟对功能脑成像中常见的二维光学成像方法的空间分辨率和深度灵敏度进行了系统研究。我们发现:(i)对于数值孔径(NA)≤0.2 或焦平面深度≤300μm 的情况,空间分辨率<200μm。(ii)超过 97%的信号来自组织的前 500μm。(iii)对于侧向尺寸大于空间分辨率的激活柱,改变数值孔径(NA)和焦平面深度不会影响深度灵敏度。(iv)对于较小的柱或被表面血管覆盖的较大柱,增加 NA 和/或焦平面深度可能会改善更深层的深度灵敏度。我们的结果为光学成像系统的优化和数据解释提供了有价值的指导。

相似文献

2
Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy.
J Biomed Opt. 2005 Jul-Aug;10(4):44016. doi: 10.1117/1.1989308.
4
Inverse scattering for optical coherence tomography.
J Opt Soc Am A Opt Image Sci Vis. 2006 May;23(5):1027-37. doi: 10.1364/josaa.23.001027.
5
Focal modulation microscopy: a theoretical study.
Opt Lett. 2010 Jun 1;35(11):1804-6. doi: 10.1364/OL.35.001804.
6
Effects of light scattering on optical-resolution photoacoustic microscopy.
J Biomed Opt. 2012 Dec;17(12):126014. doi: 10.1117/1.JBO.17.12.126014.
7
Monte Carlo simulation of 3D mapping of cardiac electrical activity with spinning slit confocal optics.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1093-7. doi: 10.1109/IEMBS.2006.259837.
8
Inverse scattering for frequency-scanned full-field optical coherence tomography.
J Opt Soc Am A Opt Image Sci Vis. 2007 Apr;24(4):1034-41. doi: 10.1364/josaa.24.001034.
10
Significance of tissue anisotropy in optical tomography of the infant brain.
Appl Opt. 2007 Apr 1;46(10):1633-40. doi: 10.1364/ao.46.001633.

引用本文的文献

1
Acoustomotive diffuse correlation spectroscopy for sensing mechanical stiffness in tissue-mimicking phantoms.
Biomed Opt Express. 2024 Aug 19;15(9):5328-5348. doi: 10.1364/BOE.531963. eCollection 2024 Sep 1.
2
Depth-Specific Hypoxic Responses to Spreading Depolarizations in Gyrencephalic Swine Cortex Unveiled by Photoacoustic Imaging.
Transl Stroke Res. 2025 Jun;16(3):672-678. doi: 10.1007/s12975-024-01247-8. Epub 2024 Apr 16.
3
Monte Carlo-Based Optical Simulation of Optical Distribution in Deep Brain Tissues Using Sixteen Optical Sources.
Bioengineering (Basel). 2024 Mar 7;11(3):260. doi: 10.3390/bioengineering11030260.
5
Aerobic exercise reverses aging-induced depth-dependent decline in cerebral microcirculation.
bioRxiv. 2023 Feb 13:2023.02.12.528244. doi: 10.1101/2023.02.12.528244.
6
Sources of widefield fluorescence from the brain.
Elife. 2020 Nov 6;9:e59841. doi: 10.7554/eLife.59841.
8
Multimodal Modeling of Neural Network Activity: Computing LFP, ECoG, EEG, and MEG Signals With LFPy 2.0.
Front Neuroinform. 2018 Dec 18;12:92. doi: 10.3389/fninf.2018.00092. eCollection 2018.
9
Designing a large field-of-view two-photon microscope using optical invariant analysis.
Neurophotonics. 2018 Apr;5(2):025001. doi: 10.1117/1.NPh.5.2.025001. Epub 2018 Feb 19.
10
Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks.
Cereb Cortex. 2016 Dec;26(12):4461-4496. doi: 10.1093/cercor/bhw237. Epub 2016 Oct 20.

本文引用的文献

2
Transport-based image reconstruction in turbid media with small source-detector separations.
Opt Lett. 2000 Dec 15;25(24):1777-9. doi: 10.1364/ol.25.001777.
3
Optical brain imaging in vivo: techniques and applications from animal to man.
J Biomed Opt. 2007 Sep-Oct;12(5):051402. doi: 10.1117/1.2789693.
4
Reconstructing a thin absorbing obstacle in a half-space of tissue.
J Opt Soc Am A Opt Image Sci Vis. 2007 Nov;24(11):3456-66. doi: 10.1364/josaa.24.003456.
5
Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio.
J Neurophysiol. 2007 Jul;98(1):502-12. doi: 10.1152/jn.01169.2006. Epub 2007 May 9.
7
Next-generation optical technologies for illuminating genetically targeted brain circuits.
J Neurosci. 2006 Oct 11;26(41):10380-6. doi: 10.1523/JNEUROSCI.3863-06.2006.
10
Physical limits to spatial resolution of optical recording: clarifying the spatial structure of cortical hypercolumns.
Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4158-63. doi: 10.1073/pnas.0500291102. Epub 2005 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验