Andronache Zoita, Ursu Daniel, Lehnert Simone, Freichel Marc, Flockerzi Veit, Melzer Werner
Institut für Angewandte Physiologie, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany.
Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17885-90. doi: 10.1073/pnas.0704340104. Epub 2007 Oct 31.
Ca2+ channels play crucial roles in cellular signal transduction and are important targets of pharmacological agents. They are also associated with auxiliary subunits exhibiting functions that are still incompletely resolved. Skeletal muscle L-type Ca2+ channels (dihydropyridine receptors, DHPRs) are specialized for the remote voltage control of type 1 ryanodine receptors (RyR1) to release stored Ca2+. The skeletal muscle-specific gamma subunit of the DHPR (gamma 1) down-modulates availability by altering its steady state voltage dependence. The effect resembles the action of certain Ca2+ antagonistic drugs that are thought to stabilize inactivated states of the DHPR. In the present study we investigated the cross influence of gamma 1 and Ca2+ antagonists by using wild-type (gamma+/+) and gamma 1 knockout (gamma-/-) mice. We studied voltage-dependent gating of both L-type Ca2+ current and Ca2+ release and the allosteric modulation of drug binding. We found that 10 microM diltiazem, a benzothiazepine drug, more than compensated for the reduction in high-affinity binding of the dihydropyridine agent isradipine caused by gamma 1 elimination; 5 muM devapamil [(-)D888], a phenylalkylamine Ca2+ antagonist, approximately reversed the right-shifted voltage dependence of availability and the accelerated recovery kinetics of Ca2+ current and Ca2+ release. Moreover, the presence of gamma 1 altered the effect of D888 on availability and strongly enhanced its impact on recovery kinetics demonstrating that gamma 1 and the drug do not act independently of each other. We propose that the gamma 1 subunit of the DHPR functions as an endogenous Ca2+ antagonist whose task may be to minimize Ca2+ entry and Ca2+ release under stress-induced conditions favoring plasmalemma depolarization.
钙离子通道在细胞信号转导中发挥着关键作用,是药物作用的重要靶点。它们还与功能尚未完全明确的辅助亚基相关。骨骼肌L型钙离子通道(二氢吡啶受体,DHPRs)专门用于对1型兰尼碱受体(RyR1)进行远程电压控制,以释放储存的钙离子。DHPR的骨骼肌特异性γ亚基(γ1)通过改变其稳态电压依赖性来下调通道的可用性。这种效应类似于某些钙离子拮抗药物的作用,这些药物被认为可稳定DHPR的失活状态。在本研究中,我们通过使用野生型(γ+/+)和γ1基因敲除(γ-/-)小鼠,研究了γ1和钙离子拮抗剂之间的相互影响。我们研究了L型钙离子电流和钙离子释放的电压依赖性门控以及药物结合的变构调节。我们发现,10微摩尔的地尔硫䓬(一种苯并噻氮䓬类药物)能够弥补因γ1缺失导致的二氢吡啶类药物伊拉地平高亲和力结合的减少;5微摩尔的维拉帕米[(-)D888](一种苯烷基胺类钙离子拮抗剂)大约能逆转因γ1缺失导致的通道可用性电压依赖性右移以及钙离子电流和钙离子释放恢复动力学的加速。此外,γ1的存在改变了你D888对通道可用性的影响,并强烈增强了其对恢复动力学的影响,这表明γ1和药物并非相互独立起作用。我们提出,DHPR的γ1亚基作为一种内源性钙离子拮抗剂,其作用可能是在有利于质膜去极化的应激诱导条件下,尽量减少钙离子内流和钙离子释放。