Curatti Leonardo, Hernandez Jose A, Igarashi Robert Y, Soboh Basem, Zhao Dehua, Rubio Luis M
Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17626-31. doi: 10.1073/pnas.0703050104. Epub 2007 Oct 31.
Biological nitrogen fixation, the conversion of atmospheric N2 to NH3, is an essential process in the global biogeochemical cycle of nitrogen that supports life on Earth. Most of the biological nitrogen fixation is catalyzed by the molybdenum nitrogenase, which contains at its active site one of the most complex metal cofactors known to date, the iron-molybdenum cofactor (FeMo-co). FeMo-co is composed of 7Fe, 9S, Mo, R-homocitrate, and one unidentified light atom. Here we demonstrate the complete in vitro synthesis of FeMo-co from Fe(2+), S(2-), MoO4(2-), and R-homocitrate using only purified Nif proteins. This synthesis provides direct biochemical support to the current model of FeMo-co biosynthesis. A minimal in vitro system, containing NifB, NifEN, and NifH proteins, together with Fe(2+), S(2-), MoO4(2-), R-homocitrate, S-adenosyl methionine, and Mg-ATP, is sufficient for the synthesis of FeMo-co and the activation of apo-dinitrogenase under anaerobic-reducing conditions. This in vitro system also provides a biochemical approach to further study the function of accessory proteins involved in nitrogenase maturation (as shown here for NifX and NafY). The significance of these findings in the understanding of the complete FeMo-co biosynthetic pathway and in the study of other complex Fe-S cluster biosyntheses is discussed.
生物固氮,即将大气中的N2转化为NH3,是全球氮生物地球化学循环中支持地球上生命的一个重要过程。大多数生物固氮是由钼固氮酶催化的,其活性位点含有迄今为止已知的最复杂的金属辅因子之一,即铁钼辅因子(FeMo-co)。FeMo-co由7个铁原子、9个硫原子、钼原子、R-高柠檬酸和一个未鉴定的轻原子组成。在这里,我们展示了仅使用纯化的固氮蛋白从Fe(2+)、S(2-)、MoO4(2-)和R-高柠檬酸体外完全合成FeMo-co。这种合成方法为当前的FeMo-co生物合成模型提供了直接的生化支持。一个最小的体外系统,包含NifB、NifEN和NifH蛋白,以及Fe(2+)、S(2-)、MoO4(2-)、R-高柠檬酸、S-腺苷甲硫氨酸和Mg-ATP,在厌氧还原条件下足以合成FeMo-co并激活脱辅基二氮酶。这个体外系统还提供了一种生化方法来进一步研究参与固氮酶成熟的辅助蛋白的功能(如这里所示的NifX和NafY)。讨论了这些发现在理解完整的FeMo-co生物合成途径以及研究其他复杂的铁硫簇生物合成中的意义。