Silverman Adam P, Jiang Qingfei, Goodman Myron F, Kool Eric T
Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.
Biochemistry. 2007 Dec 4;46(48):13874-81. doi: 10.1021/bi700851z. Epub 2007 Nov 8.
The SOS-induced DNA polymerases II and IV (pol II and pol IV, respectively) of Escherichia coli play important roles in processing lesions that occur in genomic DNA. Here we study how electrostatic and steric effects play different roles in influencing the efficiency and fidelity of DNA synthesis by these two enzymes. These effects were probed by the use of nonpolar shape analogues of thymidine, in which substituted toluenes replace the polar thymine base. We compared thymine with nonpolar analogues to evaluate the importance of hydrogen bonding in the polymerase active sites, while we used comparisons among a set of variably sized thymine analogues to measure the role of steric effects in the two enzymes. Steady-state kinetics measurements were carried out to evaluate activities for nucleotide insertion and extension. The results showed that both enzymes inserted nucleotides opposite nonpolar template bases with moderate to low efficiency, suggesting that both polymerases benefit from hydrogen bonding or other electrostatic effects involving the template base. Surprisingly, however, pol II inserted nonpolar nucleotide (dNTP) analogues into a primer strand with high (wild-type) efficiency, while pol IV handled them with an extremely low efficiency. Base pair extension studies showed that both enzymes bypass non-hydrogen-bonding template bases with moderately low efficiency, suggesting a possible beneficial role of minor groove hydrogen bonding interactions at the N-1 position. Measurement of the two polymerases' sensitivity to steric size changes showed that both enzymes were relatively flexible, yielding only small kinetic differences with increases or decreases in nucleotide size. Comparisons are made to recent data for DNA pol I (Klenow fragment), the archaeal polymerase Dpo4, and human pol kappa.
大肠杆菌中由 SOS 诱导产生的 DNA 聚合酶 II 和 IV(分别为 pol II 和 pol IV)在处理基因组 DNA 中出现的损伤时发挥着重要作用。在此,我们研究静电效应和空间效应如何在影响这两种酶进行 DNA 合成的效率和保真度方面发挥不同作用。通过使用胸腺嘧啶的非极性形状类似物来探究这些效应,其中用取代甲苯替代了极性的胸腺嘧啶碱基。我们将胸腺嘧啶与非极性类似物进行比较,以评估氢键在聚合酶活性位点中的重要性,同时我们利用一组大小可变的胸腺嘧啶类似物之间的比较来衡量空间效应在这两种酶中的作用。进行稳态动力学测量以评估核苷酸插入和延伸的活性。结果表明,两种酶将核苷酸插入非极性模板碱基对面的效率为中等至低,这表明两种聚合酶都受益于涉及模板碱基的氢键或其他静电效应。然而,令人惊讶的是,pol II 能以高(野生型)效率将非极性核苷酸(dNTP)类似物插入引物链,而 pol IV 处理它们的效率极低。碱基对延伸研究表明,两种酶绕过非氢键结合模板碱基的效率为中等偏低,这表明在 N - 1 位置的小沟氢键相互作用可能具有有益作用。对这两种聚合酶对空间大小变化的敏感性测量表明,两种酶都相对灵活,随着核苷酸大小的增加或减少,动力学差异仅很小。文中还与 DNA 聚合酶 I(klenow 片段)、古细菌聚合酶 Dpo4 和人类聚合酶κ的最新数据进行了比较。