Perlow-Poehnelt Rebecca A, Likhterov Ilya, Wang Lihua, Scicchitano David A, Geacintov Nicholas E, Broyde Suse
Department of Biology, New York University, New York, New York 10003, USA.
J Biol Chem. 2007 Jan 12;282(2):1397-408. doi: 10.1074/jbc.M606769200. Epub 2006 Nov 6.
The Y-family DNA polymerase Dpo4, from the thermophilic crenarchaeon Sulfolobus solfataricus P2, offers a valuable opportunity to investigate the effect of conformational flexibility on the bypass of bulky lesions because of its ability to function efficiently at a wide range of temperatures. Combined molecular modeling and experimental kinetic studies have been carried out for 10S-(+)-trans-anti-[BP]-N2-dG ((+)-ta-[BP]G), a lesion derived from the covalent reaction of a benzo[a]pyrene metabolite with guanine in DNA, at 55 degrees C and results compared with an earlier study at 37 degrees C (Perlow-Poehnelt, R. A., Likhterov, I., Scicchitano, D. A., Geacintov, N. E., and Broyde, S. (2004) J. Biol. Chem. 279, 36951-36961). The experimental results show that there is more overall nucleotide insertion opposite (+)-ta-[BP]G due to particularly enhanced mismatch incorporation at 55 degrees C compared with 37 degrees C. The molecular dynamics simulations suggest that mismatched nucleotide insertion opposite (+)-ta-[BP]G is increased at 55 degrees C compared with 37 degrees C because the higher temperature shifts the preference of the damaged base from the anti to the syn conformation, with the carcinogen on the more open major groove side. The mismatched dNTP structures are less distorted when the damaged base is syn than when it is anti, at the higher temperature. However, with the normal partner dCTP, the anti conformation with close to Watson-Crick alignment remains more favorable. The molecular dynamics simulations are consistent with the kcat values for nucleotide incorporation opposite the lesion studied, providing structural interpretation of the experimental observations. The observed temperature effect suggests that conformational flexibility plays a role in nucleotide incorporation and bypass fidelity opposite (+)-ta-[BP]G by Dpo4.
来自嗜热泉古菌嗜热栖热菌P2的Y家族DNA聚合酶Dpo4,因其能够在广泛的温度范围内高效发挥作用,为研究构象灵活性对大体积损伤跨越的影响提供了宝贵的机会。针对10S-(+)-反式-反式-[苯并[a]芘]-N2-鸟嘌呤((+)-反式-[苯并[a]芘]鸟嘌呤)开展了联合分子建模和实验动力学研究,该损伤源自苯并[a]芘代谢物与DNA中鸟嘌呤的共价反应,研究温度为55摄氏度,并将结果与早期在37摄氏度下的研究进行了比较(佩洛-波赫内尔特,R.A.,利赫特罗夫,I.,西奇塔诺,D.A.,贾辛托夫,N.E.,以及布罗伊德,S.(2004年)《生物化学杂志》279卷,36951 - 36961页)。实验结果表明,与37摄氏度相比,在55摄氏度时,由于错配掺入特别增强,所以在(+)-反式-[苯并[a]芘]鸟嘌呤对面的总体核苷酸插入更多。分子动力学模拟表明,与37摄氏度相比,在55摄氏度时,(+)-反式-[苯并[a]芘]鸟嘌呤对面的错配核苷酸插入增加,因为较高温度将受损碱基偏好从反式转变为顺式构象,致癌物位于更开放的大沟一侧。在较高温度下,当受损碱基为顺式时,错配的dNTP结构扭曲程度小于其为反式时。然而,对于正常的配对dCTP,接近沃森-克里克配对的反式构象仍然更有利。分子动力学模拟与针对该损伤的核苷酸掺入的kcat值一致,为实验观察结果提供了结构解释。观察到的温度效应表明,构象灵活性在Dpo4对(+)-反式-[苯并[a]芘]鸟嘌呤的核苷酸掺入和跨越保真度中发挥作用。