Clift Michael D, Ji Haitao, Deniau Gildas P, O'Hagan David, Silverman Richard B
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
Biochemistry. 2007 Dec 4;46(48):13819-28. doi: 10.1021/bi701249q. Epub 2007 Nov 8.
Gamma-aminobutyric acid aminotransferase (GABA-AT), a pyridoxal 5'-phosphate dependent enzyme, catalyzes the degradation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) to succinic semialdehyde with concomitant conversion of pyridoxal 5'-phosphate (PLP) to pyridoxamine 5'-phosphate (PMP). The enzyme then catalyzes the conversion of alpha-ketoglutarate to the excitatory neurotransmitter L-glutamate. Racemic 4-amino-3-fluorobutanoic acid (3-F-GABA) was shown previously to act as a substrate for GABA-AT, not for transamination, but for HF elimination. Here we report studies of the reaction catalyzed by GABA-AT on (R)- and (S)-3-F-GABA. Neither enantiomer is a substrate for transamination. Very little elimination from the (S)-enantiomer was detected using a coupled enzyme assay; The rate of elimination of HF from the (R)-enantiomer is at least 10 times greater than that for the (S)-enantiomer. The (R)-enantiomer is about 20 times more efficient as a substrate for GABA-AT catalyzed HF elimination than GABA is a substrate for transamination. The (R)-enantiomer also inhibits the transamination of GABA 10 times more effectively than the (S)-enantiomer. Using a combination of computer modeling and the knowledge that vicinal C-F and C-NH3+ bonds have a strong preference to align gauche rather than anti to each other, it is concluded that on binding of free 3-F-GABA to GABA-AT the optimal conformation places the C-NH3+ and C-F bonds gauche in the (R)-enantiomer but anti in the (S)-enantiomer. Furthermore, the dynamic binding process and the bioactive conformation of GABA bound to GABA-AT have been inferred on the basis of the different biological behavior of the two enantiomers of 3-F-GABA when they bind to the enzyme. The present study suggests that the C-F bond can be utilized as a conformational probe to explore the dynamic binding process and provide insight into the bioactive conformation of substrates, which cannot be easily determined by other biophysical approaches.
γ-氨基丁酸转氨酶(GABA-AT)是一种依赖磷酸吡哆醛的酶,催化抑制性神经递质γ-氨基丁酸(GABA)降解为琥珀酸半醛,同时磷酸吡哆醛(PLP)转化为磷酸吡哆胺(PMP)。然后该酶催化α-酮戊二酸转化为兴奋性神经递质L-谷氨酸。外消旋4-氨基-3-氟丁酸(3-F-GABA)先前已被证明可作为GABA-AT的底物,但不是用于转氨基作用,而是用于消除HF。在此我们报告了GABA-AT催化的(R)-和(S)-3-F-GABA反应的研究。两种对映体都不是转氨基作用的底物。使用偶联酶测定法,未检测到(S)-对映体有很少的消除反应;(R)-对映体的HF消除速率至少是(S)-对映体的10倍。(R)-对映体作为GABA-AT催化HF消除的底物的效率比GABA作为转氨基作用的底物高约20倍。(R)-对映体对GABA转氨基作用的抑制作用也比(S)-对映体有效10倍。结合计算机建模以及邻位C-F和C-NH3+键强烈倾向于以邻位交叉而非反式排列的知识,得出结论:游离3-F-GABA与GABA-AT结合时,最佳构象使(R)-对映体中的C-NH3+和C-F键处于邻位交叉,但在(S)-对映体中处于反式。此外,基于3-F-GABA的两种对映体与酶结合时的不同生物学行为,推断出GABA与GABA-AT结合的动态结合过程和生物活性构象。本研究表明,C-F键可作为构象探针来探索动态结合过程,并深入了解底物的生物活性构象,而这是其他生物物理方法难以确定的。