Suppr超能文献

4-氨基-3-氟丁酸对映体作为γ-氨基丁酸转氨酶的底物。γ-氨基丁酸结合的构象探针。

Enantiomers of 4-amino-3-fluorobutanoic acid as substrates for gamma-aminobutyric acid aminotransferase. Conformational probes for GABA binding.

作者信息

Clift Michael D, Ji Haitao, Deniau Gildas P, O'Hagan David, Silverman Richard B

机构信息

Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.

出版信息

Biochemistry. 2007 Dec 4;46(48):13819-28. doi: 10.1021/bi701249q. Epub 2007 Nov 8.

Abstract

Gamma-aminobutyric acid aminotransferase (GABA-AT), a pyridoxal 5'-phosphate dependent enzyme, catalyzes the degradation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) to succinic semialdehyde with concomitant conversion of pyridoxal 5'-phosphate (PLP) to pyridoxamine 5'-phosphate (PMP). The enzyme then catalyzes the conversion of alpha-ketoglutarate to the excitatory neurotransmitter L-glutamate. Racemic 4-amino-3-fluorobutanoic acid (3-F-GABA) was shown previously to act as a substrate for GABA-AT, not for transamination, but for HF elimination. Here we report studies of the reaction catalyzed by GABA-AT on (R)- and (S)-3-F-GABA. Neither enantiomer is a substrate for transamination. Very little elimination from the (S)-enantiomer was detected using a coupled enzyme assay; The rate of elimination of HF from the (R)-enantiomer is at least 10 times greater than that for the (S)-enantiomer. The (R)-enantiomer is about 20 times more efficient as a substrate for GABA-AT catalyzed HF elimination than GABA is a substrate for transamination. The (R)-enantiomer also inhibits the transamination of GABA 10 times more effectively than the (S)-enantiomer. Using a combination of computer modeling and the knowledge that vicinal C-F and C-NH3+ bonds have a strong preference to align gauche rather than anti to each other, it is concluded that on binding of free 3-F-GABA to GABA-AT the optimal conformation places the C-NH3+ and C-F bonds gauche in the (R)-enantiomer but anti in the (S)-enantiomer. Furthermore, the dynamic binding process and the bioactive conformation of GABA bound to GABA-AT have been inferred on the basis of the different biological behavior of the two enantiomers of 3-F-GABA when they bind to the enzyme. The present study suggests that the C-F bond can be utilized as a conformational probe to explore the dynamic binding process and provide insight into the bioactive conformation of substrates, which cannot be easily determined by other biophysical approaches.

摘要

γ-氨基丁酸转氨酶(GABA-AT)是一种依赖磷酸吡哆醛的酶,催化抑制性神经递质γ-氨基丁酸(GABA)降解为琥珀酸半醛,同时磷酸吡哆醛(PLP)转化为磷酸吡哆胺(PMP)。然后该酶催化α-酮戊二酸转化为兴奋性神经递质L-谷氨酸。外消旋4-氨基-3-氟丁酸(3-F-GABA)先前已被证明可作为GABA-AT的底物,但不是用于转氨基作用,而是用于消除HF。在此我们报告了GABA-AT催化的(R)-和(S)-3-F-GABA反应的研究。两种对映体都不是转氨基作用的底物。使用偶联酶测定法,未检测到(S)-对映体有很少的消除反应;(R)-对映体的HF消除速率至少是(S)-对映体的10倍。(R)-对映体作为GABA-AT催化HF消除的底物的效率比GABA作为转氨基作用的底物高约20倍。(R)-对映体对GABA转氨基作用的抑制作用也比(S)-对映体有效10倍。结合计算机建模以及邻位C-F和C-NH3+键强烈倾向于以邻位交叉而非反式排列的知识,得出结论:游离3-F-GABA与GABA-AT结合时,最佳构象使(R)-对映体中的C-NH3+和C-F键处于邻位交叉,但在(S)-对映体中处于反式。此外,基于3-F-GABA的两种对映体与酶结合时的不同生物学行为,推断出GABA与GABA-AT结合的动态结合过程和生物活性构象。本研究表明,C-F键可作为构象探针来探索动态结合过程,并深入了解底物的生物活性构象,而这是其他生物物理方法难以确定的。

相似文献

4
Stereoelectronic explanations for the mechanistic details of transimination and HF elimination reactions.
J Mol Graph Model. 2014 Jun;51:173-83. doi: 10.1016/j.jmgm.2014.05.006. Epub 2014 Jun 2.
5
Mechanism-based inactivation of gamma-aminobutyric acid aminotransferase by 3-amino-4-fluorobutanoic acid.
Bioorg Med Chem. 1996 Sep;4(9):1521-35. doi: 10.1016/0968-0896(96)00145-9.
7
Time-dependent inhibition of gamma-aminobutyric acid aminotransferase, by 3-hydroxybenzylhydrazine.
Bioorg Med Chem. 1995 May;3(5):579-85. doi: 10.1016/0968-0896(95)00070-w.
9
Theoretical study on HF elimination and aromatization mechanisms: a case of pyridoxal 5' phosphate-dependent enzyme.
J Org Chem. 2012 Jul 6;77(13):5533-43. doi: 10.1021/jo3005815. Epub 2012 Jun 13.
10
Succinic semialdehyde as a substrate for the formation of gamma-aminobutyric acid.
J Neurochem. 1985 Nov;45(5):1471-4. doi: 10.1111/j.1471-4159.1985.tb07214.x.

本文引用的文献

1
An update on GABA analogs for CNS drug discovery.
Recent Pat CNS Drug Discov. 2006 Jan;1(1):113-8. doi: 10.2174/157488906775245291.
3
The intramolecular beta-fluorine...ammonium interaction in 4- and 8-membered rings.
Chem Commun (Camb). 2006 Aug 14(30):3190-2. doi: 10.1039/b606334a. Epub 2006 Jun 21.
4
Functional implications of neurotransmitter co-release: glutamate and GABA share the load.
Curr Opin Pharmacol. 2006 Feb;6(1):114-9. doi: 10.1016/j.coph.2005.12.001. Epub 2005 Dec 15.
5
Syntheses and evaluation of fluorinated conformationally restricted analogues of GABA as potential inhibitors of GABA aminotransferase.
Bioorg Med Chem. 2006 Apr 1;14(7):2242-52. doi: 10.1016/j.bmc.2005.11.010. Epub 2005 Nov 28.
7
GABA signalling: therapeutic targets for epilepsy, Parkinson's disease and Huntington's disease.
Expert Opin Ther Targets. 2001 Apr;5(2):219-39. doi: 10.1517/14728222.5.2.219.
8
The GABA shunt: an attractive and potential therapeutic target in the treatment of epileptic disorders.
Curr Drug Metab. 2005 Apr;6(2):127-39. doi: 10.2174/1389200053586073.
9
3-Fluoropiperidines and N-methyl-3-fluoropiperidinium salts: the persistence of axial fluorine.
Chemistry. 2005 Feb 18;11(5):1579-91. doi: 10.1002/chem.200400835.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验