Rohde Britta, Hans Joachim, Martens Stefan, Baumert Alfred, Hunziker Peter, Matern Ulrich
Institut für Pharmazeutische Biologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, 35037 Marburg, Germany.
Plant J. 2008 Feb;53(3):541-53. doi: 10.1111/j.1365-313X.2007.03360.x. Epub 2007 Nov 6.
Acridone alkaloids formed by acridone synthase in Ruta graveolens L. are composed of N-methylanthraniloyl CoA and malonyl CoAs. A 1095 bp cDNA from elicited Ruta cells was expressed in Escherichia coli, and shown to encode S-adenosyl-l-methionine-dependent anthranilate N-methyltransferase. SDS-PAGE of the purified enzyme revealed a mass of 40 +/- 2 kDa, corresponding to 40 059 Da for the translated polypeptide, whereas the catalytic activity was assigned to a homodimer. Alignments revealed closest relationships to catechol or caffeate O-methyltransferases at 56% and 55% identity (73% similarity), respectively, with little similarity ( approximately 20%) to N-methyltransferases for purines, putrescine, glycine, or nicotinic acid substrates. Notably, a single Asn residue replacing Glu that is conserved in caffeate O-methyltransferases determines the catalytic efficiency. The recombinant enzyme showed narrow specificity for anthranilate, and did not methylate catechol, salicylate, caffeate, or 3- and 4-aminobenzoate. Moreover, anthraniloyl CoA was not accepted. As Ruta graveolens acridone synthase also does not accept anthraniloyl CoA as a starter substrate, the anthranilate N-methylation prior to CoA activation is a key step in acridone alkaloid formation, channelling anthranilate from primary into secondary branch pathways, and holds promise for biotechnological applications. RT-PCR amplifications and Western blotting revealed expression of the N-methyltransferase in all organs of Ruta plants, particularly in the flower and root, mainly associated with vascular tissues. This expression correlated with the pattern reported previously for expression of acridone synthase and acridone alkaloid accumulation.
由芸香(Ruta graveolens L.)中的吖啶酮合酶形成的吖啶酮生物碱由N-甲基邻氨基苯甲酰辅酶A和丙二酰辅酶A组成。从诱导的芸香细胞中获得的一段1095 bp的cDNA在大肠杆菌中表达,并显示其编码依赖S-腺苷-L-甲硫氨酸的邻氨基苯甲酸N-甲基转移酶。纯化酶的SDS-PAGE显示其质量为40±2 kDa,对应于翻译多肽的40059 Da,而催化活性归因于同型二聚体。序列比对显示,该酶与儿茶酚或咖啡酸O-甲基转移酶的亲缘关系最为密切,同一性分别为56%和55%(相似性为73%),与嘌呤、腐胺、甘氨酸或烟酸底物的N-甲基转移酶的相似性很小(约20%)。值得注意的是,在咖啡酸O-甲基转移酶中保守的一个Asn残基取代了Glu,这决定了催化效率。重组酶对邻氨基苯甲酸显示出狭窄的特异性,不能使儿茶酚、水杨酸、咖啡酸或3-和4-氨基苯甲酸甲基化。此外,该酶不接受邻氨基苯甲酰辅酶A。由于芸香吖啶酮合酶也不接受邻氨基苯甲酰辅酶A作为起始底物,因此在辅酶A激活之前的邻氨基苯甲酸N-甲基化是吖啶酮生物碱形成的关键步骤,它将邻氨基苯甲酸从初级分支途径引导到次级分支途径,并且在生物技术应用方面具有前景。RT-PCR扩增和蛋白质免疫印迹显示,N-甲基转移酶在芸香植物的所有器官中均有表达,尤其是在花和根中,主要与维管组织相关。这种表达与先前报道的吖啶酮合酶表达模式和吖啶酮生物碱积累模式相关。