Liu Qi, Dinu Irina, Adewale Adeniyi J, Potter John D, Yasui Yutaka
School of Public Health, University of Alberta, Edmonton, Alberta, T6G2G3, Canada.
BMC Bioinformatics. 2007 Nov 7;8:431. doi: 10.1186/1471-2105-8-431.
Multiple data-analytic methods have been proposed for evaluating gene-expression levels in specific biological pathways, assessing differential expression associated with a binary phenotype. Following Goeman and Bühlmann's recent review, we compared statistical performance of three methods, namely Global Test, ANCOVA Global Test, and SAM-GS, that test "self-contained null hypotheses" Via. subject sampling. The three methods were compared based on a simulation experiment and analyses of three real-world microarray datasets.
In the simulation experiment, we found that the use of the asymptotic distribution in the two Global Tests leads to a statistical test with an incorrect size. Specifically, p-values calculated by the scaled chi2 distribution of Global Test and the asymptotic distribution of ANCOVA Global Test are too liberal, while the asymptotic distribution with a quadratic form of the Global Test results in p-values that are too conservative. The two Global Tests with permutation-based inference, however, gave a correct size. While the three methods showed similar power using permutation inference after a proper standardization of gene expression data, SAM-GS showed slightly higher power than the Global Tests. In the analysis of a real-world microarray dataset, the two Global Tests gave markedly different results, compared to SAM-GS, in identifying pathways whose gene expressions are associated with p53 mutation in cancer cell lines. A proper standardization of gene expression variances is necessary for the two Global Tests in order to produce biologically sensible results. After the standardization, the three methods gave very similar biologically-sensible results, with slightly higher statistical significance given by SAM-GS. The three methods gave similar patterns of results in the analysis of the other two microarray datasets.
An appropriate standardization makes the performance of all three methods similar, given the use of permutation-based inference. SAM-GS tends to have slightly higher power in the lower alpha-level region (i.e. gene sets that are of the greatest interest). Global Test and ANCOVA Global Test have the important advantage of being able to analyze continuous and survival phenotypes and to adjust for covariates. A free Microsoft Excel Add-In to perform SAM-GS is available from http://www.ualberta.ca/~yyasui/homepage.html.
已经提出了多种数据分析方法来评估特定生物途径中的基因表达水平,评估与二元表型相关的差异表达。继戈曼和比尔曼最近的综述之后,我们比较了三种方法的统计性能,即全局检验、协方差分析全局检验和SAM-GS,它们通过受试者抽样来检验“自包含零假设”。基于模拟实验和对三个真实世界微阵列数据集的分析对这三种方法进行了比较。
在模拟实验中,我们发现两种全局检验中渐近分布的使用导致了大小不正确的统计检验。具体而言,通过全局检验的缩放卡方分布和协方差分析全局检验的渐近分布计算的p值过于宽松,而具有二次形式的全局检验的渐近分布导致p值过于保守。然而,两种基于置换推断的全局检验给出了正确的大小。虽然在对基因表达数据进行适当标准化后,这三种方法在使用置换推断时显示出相似的功效,但SAM-GS显示出比全局检验略高的功效。在对一个真实世界微阵列数据集的分析中,与SAM-GS相比,两种全局检验在识别癌细胞系中基因表达与p53突变相关的途径时给出了明显不同的结果。为了产生生物学上合理的结果,两种全局检验需要对基因表达方差进行适当标准化。标准化后,这三种方法给出了非常相似的生物学上合理的结果,SAM-GS给出的统计显著性略高。在对其他两个微阵列数据集的分析中,这三种方法给出了相似的结果模式。
在使用基于置换推断的情况下,适当的标准化使所有三种方法的性能相似。SAM-GS在较低的α水平区域(即最受关注的基因集)往往具有略高的功效。全局检验和协方差分析全局检验具有能够分析连续和生存表型并调整协变量的重要优势。可从http://www.ualberta.ca/~yyasui/homepage.html获得执行SAM-GS的免费Microsoft Excel插件。